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ABSTRACT

The work described in this technical report deals with the problem of providing a
statistical model of the backscattering from ground surfaces for high-resolution Synthetic
Aperture Radar (SAR) systems. We report here the results of our research activity. In
particular, the statistical analysis of amplitude, texture and speckle of high-resolution X-
band MSTAR data of two different vegetated areas, grass field, and tree area. The analysis
of the data has been performed focusing on the possible statistical differences and
similarities in the statistical behavior of clutter due to changes of vegetation and terrain
Structure.

The report is also devoted to the description of the analysis of clutter on many more
data files, with particular attention to the range and cross-range correlation functions and
Power Spectral Density (PSD). Also, speckle analysis is also extended to other SAR data
sets in X- and L-band, at coarser resolution than MSTAR, including data from AIRSAR.
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CHAPTER 1
STATISTICAL ANALYSIS OF
MSTAR CLUTTER DATA

1.1 Introduction

In a SAR image each pixel corresponds to a pair of voltages for phase and quadrature
channels. These measured values represent the effects of the scene on the transmitted wave.
The measured voltages should be converted to “geophysical” units corresponding to the
complex reflectivity RCS (radar cross section), or backscattering coefficient of the scene.
Then the measurements made by the SAR are fundamentally determined by electromagnetic
scattering processes. SAR images may be considered in terms of solution of Maxwell’s
equations for the propagation geometry and the scattering scene. However, both on theoretical
and practical grounds, this viewpoint provides only a partial contribution to the understanding
of the available information. From the point of view of electromagnetic theory, two
approaches are relevant. The first of these is the Forward Problem, in which the properties of
the scattering medium and the incoming wave are specified and used to predict the scattered
field. Solutions to this problem are currently available only by imposing considerable
restrictions on the scattering medium, for example, by assuming that all length scales in the
medium are large (or small) relative to the wavelength, or that only surface (not volume)
scattering is occurring (or viceversa), or that occultation (shadowing) effects can be ignored.
Even with such restrictions, full wave solutions are in most cases unavailable.

Much more important is the Inverse Problem. Methods to solve the Inverse Problem are
mathematically complicated and difficult. However, the real source of the difficulty in the
Inverse Problem is not only the mathematics but that there is rarely enough information to
provide a unique solution. In other words, the number of parameters needed to characterize
the target in the scattering model exceeds the number of independent measurements available

at the sensor [O1i98].



These approaches to describe information in SAR images through electromagnetic
theory have the apparent advantage that they map the observed signal onto physical properties
of the scene, such a dielectric constant, geometrical factors (e.g. size, height, and roughness),
and polarizability. In other words, they provide a link between observations and measurable
quantities on the ground (this is often very difficult to turn into practice because of the
problem of providing measurements that are truly representative of the scattering medium).
Typically, both the Forward and Inverse Problems require some a priori knowledge before
they can be invoked, such as knowledge that the region is woodland or ocean or ice.

The primary geophysical quantity determining the SAR data is the complex radar
reflectivity of the scene. Qualitatively, this concept expresses the fact that when an
electromagnetic wave scatters from position (x,)) on Earth’s surface, the physical properties
of the terrain cause changes both phase @(x,y) and amplitude 4(x,y) of the transmitted wave.
In fact, the SAR measures the pair (Acosp, Asing) in the in-phase and quadrature channels of

the receiver. This estimate of the local reflectivity at each pixel can also be represented by the

complex number Ae’?; in this form, the SAR data are known as the complex image. From the
complex image, a variety of other products can be formed, for example, images of the real
part Asing (the quadrature component), the amplitude 4, the phase ¢, the intensity /=47, or
the log-intensity log(/) (intensity is synonymous of power or energy). The log-image is also
sometimes referred to as the “dB” image, since for calibrated data each pixel corresponds to a
linearly scaled estimate of the backscattering coefficient ¢° in dB. For a properly calibrated
system, these are all true measurements of the scattering properties of Earth’s surface (except
for those effects caused by system noise), but visually they produce quite different
representations. For example, the real and the imaginary images show some structure, but
appear extremely noisy, the phase image is noise-like and shows no structure, while the
amplitude, intensity, and log-images, though noisy, are clearly easier to interpret. In Fig.1.1,

as an example, we can observe a dB image relative to MSTAR data.



Figure 1.1 - SAR image, file HB06209, MSTAR data.

The noise characterizing SAR images is known as speckle. The speckle is different
from electrical thermal noise but it is a real electromagnetic measurement.

With distributed targets, we can think that each resolution cell contains a number of
discrete scatters. When radar wave interacts with the target, each scatterer contributes to the

returned wave with a phase and amplitude change, so the total returned wave is:



N
Ae’ =" A,e™ (1.1)
k=1

This summation is over the number of scatterers illuminated by the beam. The
individual scattering amplitude is not observable because the individual scatters are on much
smaller scales than the resolution of the SAR, and there are normally many such scatters per
resolution cell.

An immediate conclusion from (1.1) is that the observed signal will be affected by
interference effects as a consequence of the phase differences between scatterers. In fact,
speckle can be understood as an interference phenomenon in which the principal source of the

noise-like quality of the observed data is the distribution of the phase term ¢, . Hence,

scatterers at different parts of the resolution cell will contribute very different phases to signal
return even if their scattering behavior is identical. As a result, we can in practice think of the

phase ¢, as being uniformly distributed in [-7,m] and independent of the amplitude 4, .

By considering large number of statistically identical scatterers, the analysis reveals
that:

e The in-phase and quadrature components z, = Acos¢ and z, = Asengd will be

independent and identically distributed Gaussian random variables, with zero mean

and variance ¢/2.

e The in phase and quadrature components will have a joint probability density function

(PDF) given by:
o

(z z )—Lexp _ﬁ (1.2)
Pz.2,\%1>2, i 2 .

e The phase observed will be uniformly distributed over [-m,x].

e The amplitude A will have a Rayleigh distribution:

24 A
p.,(A)= —2exp(——2] A>0 (1.3)
(o2 o



2
o

) .. T
with mean value and standard deviation (1 _ZJ o’ .

e The observed intensity or power /= 4> will have a negative exponential distribution:
P,(I):Lzexp(—in >0 (1.4)
o o
e The log intensity D =In/ has a Fischer-Tippet distribution:
eD eD
PD (D):?CXP(—?] (15)

whose mean value and variance are Inc™- y ; and 7° / 6, respectively. The symbol y, denotes

Euler’s constant whose approximate value is 0.57722. The distributions in equations (1.1)-
(1.5) are of fundamental importance in handling SAR data. Notice that, whit the exception of
the phase distribution; they are completely characterized by a single parameter 6> which
carries all the available information about the illuminated area. From (1.4) we can see that o”
corresponds to the average intensity.

By analyzing an SAR image as that in figure 1.2 in the wooded region, it is apparent
that there are fluctuations in addition to speckle. Physically this appears to correspond to
strong returns from the crowns of trees with shadows behind them. If we disregard the
deterministic positions of these light and dark fluctuations, we can treat this type of natural
clutter as a noise-like fexture. Note that texture is a consequence of fluctuation in the RCS.

Let us now identify measures that can provide discrimination between such classes of

texture. Typically, in SAR images the brightness of the field is the same as the wood, a
discriminating feature could then be the contrast (=+/var/ / <[ > ), which takes different values

for the field and woodland regions. Generally, the result for the field region is close to unity,
as expected for pure speckle, while the woodland region has increased fluctuations. Urban
areas typically display even stronger contrast. Another distinguishing characteristic can be

spatial size of the forms that appear in the image. In the field region, only speckle fluctuations



are observed. The woodland sample also includes variation on a scale consistent with tree size
and separation. Generally, images with different vegetation present different statistics

characteristics [O1i98].

Figure 1.2 - SAR image, file HB06198, MSTAR data.

Many distributions have been proposed in the literature to model the amplitude
probability density function (APDF) of ground SAR data. In this work, we compare the
histogram or empirical APDF of the data with Log-normal (LN), Weibull (W), K, and



Generalized K (GK) PDFs. The expressions of these PDFs and their moments are reported
below (see also [Gre04], [Far97]), where R =|z[i] denotes the clutter amplitude:

Log-normal (LN):

1

PDF pr(r)=ﬁexp£— 22_2 [(lnr—lné')zDu(r) (1.6)

Moments E{R"}z&" exp(n’c’/2) n=1,272... (1.7)

where 0 is the scale parameter and o is the shape parameter.

Weibull (W):

PDF DPr (r):b%r“1 exp[—(r/b)c}u(r) (1.8)

Moments E{ ”}:b"F(£+1j n=1,2,2.. (1.9)
c

where c is the shape parameter and b the scale parameter. Rayleigh model is a particular case
of Weibull for ¢=2, while for ¢c=1 we have the exponential negative probability density

function (PDF).

K Model:

PDF Py (r)= “_ZV/'U \/zr l/Kv_l \/Er u(r) (1.10)
2T\ m U
arfv+ 21+

Moments E{R”}:(ZT/‘JZ ( i}v)[ 2) n=12.3,... (1.11)



where: I'(.) is the Gamma function, K,.; is the Bessel function of third kind and order v-1, v is

shape parameter, p is scale parameter.

K-Generalized Model (lognormal texture, LNT):

rot2 P 1 T ?
PDF = — —— In| — d
PR(F) /_27zo'_2'(|;2'2 eXp{T Zo_z{n(zmj} :| 4

2 2

Moments E{R"}= (2m)21"(1+§) exp[n 80- J n=1,23,...

K-Generalized Model (Gamma Generalized texture, GK):

PDF Pa(r)= 1_2(”:) (%) I 72 exp {é - (%rjb }a’r

2 F(v + ;b)l"(l + ZJ
Moments E{R"}=(’uj n=1,23,...

(1.12)

(1.13)

(1.14)

(1.15)

In the past, the most popular model for clutter analysis was the Gaussian. According to

it, #(n) is a stationary Gaussian complex process, r(n)=r,(n)+ jr,(n) with 7,(n) and r,(n) the

in-phase and quadrature component respectively, both with zero mean value. This model is a

consequence of the Central Limit Theorem which supposes a large number of scatterers in the

resolution cell and no dominant scatterers.

In SAR systems with a very high resolution, the number of scatterers cannot be

considered infinite and sometimes dominant scatterers can be present, then the hypotheses of

the central limit theorem are not verified; the Gaussian complex model is inadequate and for

the description of clutter amplitude we cannot apply the Rayleigh PDF.



A model that in the last 15 years became popular in the description of clutter data,
particularly for real aperture radars, is the compound-Gaussian model. According to it, the
samples of clutter complex envelope can be written as the product of two uncorrelated

processes, that is:
r(n)=\Jz(n)x(n) (1.16)

where x(n) is a stationary Gaussian complex process called speckle, and x(n)=x,(n)+ jx,(n),
where x,(n) and Xo (n) are respectively the in-phase and quadrature components. x,(n)

and x,(n) satisfy the following equations:

Elx,(n)} = Edxp(n)j=0 (1.17)
Ef )= Elg )= (1.18)

Therefore
Epaf =1 (1.19)

The amplitude of the speckle is Rayleigh-distributed.
t(n) is a real positive process called texture and represents the varying RCS (Radar
Cross Section) in the SAR image. If the PDF of clutter and texture are known, we can obtain

the distribution of the clutter amplitude trough the expression:

r(n)=R= \/Tn)‘x(n)‘ (1.20)

fxﬂ=TﬁGh%ﬁ&Mr (1.21)



It is worth noticing that in this analysis we consider terrain images for which the clutter
processes are not variable with time but with space. The n index generally denotes the time
lags. For our data n denotes the space position.

Weibull, K and Generalized-K models are particular cases of the compound-Gaussian
model'. The speckle is always Gaussian distributed, while each different model is
characterized by the distribution of the texture.

Texture can be characterized by the Gamma (I") PDF [Gin02]:

p.(z)= (V)Gj /e >0 (1.22)

where I'(.) is the gamma function, p the mean value, u=FE{t}; v is the order parameter (v is a
measure of Gaussian deviation); in other words v is a measurement of the non-homogeneity
of the texture. The variance of 7 is related to v by Var{r} =u’ / V.

Experimental values of v are generally larger then 0.1. When v—oo, var{t} —0 and the
clutter becomes Gaussian-distributed; this situation corresponds to a homogeneous scene.

In this condition (Gamma distributed texture and Gaussian distributed speckle), the
clutter amplitude 7 is distributed by a K PDF, whose analytic expression is reported in eq.
(1.5). In the case of Gaussian PDF for speckle and Generalized-Gamma PDF for the texture,
we obtain a clutter amplitude modeled as GK (Generalized-K). This PDF is expressed by eq.
(1.9). The Generalized Gamma (GI") PDF is given by [Gin00]:

eools) g e

where u(.) is step function, I'(.) is the Gamma function, u is scale parameter, v is the shape

parameter and b is the power parameter.
In the case of Gaussian PDF for speckle and Lognormal PDF for texture, we obtain a
clutter amplitude distribution modeled as GK “with Lognormal texture”; analytic expression

is reported in (1.7).

' The Lognormal is not a compound-Gaussian model.

10



Characteristic parameters of Lognormal, Weibull, K, GK with Lognormal texture and
GK with Gamma Generalized texture PDFs, have been estimated trough moments method, by
equating the expressions of theoretical moments with the corresponding estimates obtained by

the expression:
E{R"= g (n) =S JrGi)" (1.24)

where N is the number of samples for the considered image (as instance, N=2626048 for the
HBO06171 file). Characteristic parameters of GK with GI" texture PDF have been estimated by
the following method [Gin00]:

|2

n o m (n)—m (n)
A= E R R
arginln 2 . (n) ‘

(1.25)
where A is the vector of parameters to be estimated.
The data we processed have been obtained by Sandia National Laboratory with Starlos
SAR on September, 05, 2005 at Huntsville, Alabama (USA). This sensor operates in X-band
(central frequency 9.6 GHz). Principal characteristics of this radar are reported in Table 1.1.
The dataset consists of 50 files; each file presents a header in which some information
on the radar characteristics is reported: frequency, resolution, etc.
Each file, after the header, contains modulus and phase of the data. The modulus is used for

visualization of images. These images represent different type of terrain.

11



Data Collectors Sandia National Lab
Date of the acquisition 05/09/1995

site Huntsville, Alabama (USA)
Sensor name Twin Otter

Range resolution 0.3047 m

Cross range resolution 0.3047 m

Range pixel spacing 0.2021048 m

Cross range pixel spacing 0.203125 m
[Additive Noise -32 to -34 dB
Multiplicative Noise -10 dB

Central frequency 9.60 GHz
Bandwidth 0.591 GHz
Dynamic Range 64 dB

Azimuth Beamwidth 8.8°

Elevation Beamwidth 6.8°

Polarization HH

Bits per pixel 16

Radar position bottom

Table 1.1 — MSTAR radar characteristics

We have classified the files by observing SAR images and by noting presence and absence of

natural or man-made objects. This classification is based on visual inspection. We have

recognized four terrain types:

l.
2.
3.
4.

grass field
land with dense vegetation
land with sparse vegetation

land characterized by object man-made (farm-house) and vegetation

This classification is purely visual and it is not rigorous (we can find some man-made

object in

areas classified as “land with dense vegetation”).

The modulus of data is saved in matrices with variable dimensions. All the matrices

have the

same number of rows (1784), while the columns vary from a minimum length of

1472 to a maximum length of 1478.

12



We have analyzed grass field first, in particular 7 files, cut in patches obtained from the
original images. Later we will consider the file HB06202 which is relative to dense vegetation

terrain.

1.2 Statistical analysis of grass field
1.2.1 HB06171 File

Statistical analysis of this file has been performed on the overall image and on two
patches obtained by the original image. The size of the large image is 1784x1472 pixels. The
two patches have size (1,892)x(1,1472) and (893,1784)x(1,1472) respectively, where in (x,y)
x is the first pixel and y the last one in range and cross-range. The whole image is reported in

Fig. 1.2.

L

200

400 600 800 1000 1200 1400
Figure 1.3 - Grass field of HB06171 file.

In the following, we show the results of the statistical analysis. Fig. 1.4 shows plots of
the PDFs for the overall image. Histogram has been calculated on 101 bins (intervals); Fig.

1.5 and Fig. 1.6 show the normalized moments and the “Weibull paper” [Far97].

13
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Figure 1.4 - Amplitude PDF of clutter data for the image (1784x1472).
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Figure 1.7 shows the image of the upper patch considered in the statistical analysis and

Figs. 1.8-1.10 the results of statistical analysis for this patch ((1,892)x(1,1472)).
10"
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Figure 1.8 - Amplitude PDF of clutter data for the patch (1,892)x(1,1472).
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Figure 1.9 - Normalized moments for the patch (7,892)x(1,1472).
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We also report the results for the lower patch in Fig. 1.11-1.14. The results are very
similar for the whole image and the two patches due to the homogeneity of the MSTAR data

in this area.
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Figure 1.11 - Grass field in the lower patch (893,1784)x(1,1472).
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Figure 1.12 - Amplitude PDF of clutter data for the patch (893,1784)x(1,1472).
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In Table 1.2 we report the parameters’ values estimated by the Method of Moments

(MoM) for the whole image and the two patches.

Size of patch Weibull Lognormal K GK LNT

& b | S 6 |V L O A i
(1784x1472) 1.66 15.66 | 11.93 0.57 | 2.86 13547 | 0.35 150.84 4.72 | 033 114.83
(1,892)x(1,1472) 1.63 1542 | 11.70 0.58 | 2.86 132.96 | 0.28 124.28 5.33 | 0.36  110.64
(893,1784)x(1,1472) | 1.69 1590 | 12.19 0.55 | 2.86 137.99 | 036 151.71 5.02 | 029 119.12

Table 1.2 - Parameter values of models tested on HB06171 file.

Due to the homogeneity of the image, the statistical differences between whole image
and two patches are negligible, as also evidenced by the PDF parameters, reported in Table
1.2.

All the models, but the log-normal, show a good fitting with the histogram. Some
deviation is present only on the tail. Similar conclusions can be drawn observing the plots of
moments, where the best models seem to be K, W and LNT. Looking at the values of the PDF
parameters, we can conclude that the clutter of this image is not spiky. In fact, the average
value of Weibull shape parameter c is close to 2, meaning that the clutter is almost Rayleigh
distributed.”

As a deeper analysis, we applied two goodness-of-fit test, Kolmogorov-Smirnov and
Kuiper tests. Details on the mathematical theory and practical implementation of these tests
are described in Appendix A.

The results are reported in Tables 1.2 and 1.3 relating to the whole images and the two
patches. It is apparent that both tests provide very similar results for all the models, and then
they do not help us in identifying the best fitting. We report in red the model that exhibits the

smallest distance to the data distribution.

> We use Weibull shape parameter ¢ to measure the spikiness of the clutter because the meaning of this
parameter is very easy to understand.
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1784x1472 w LN K GK LNT
Prob 100 % 97 % 100 % 100 % 100 %
d 1.48*%107 6.71%1072 2.25%1072 1.57%1072 1.23%107
(893,1784)x (1,1472) 100 % 92 % 100 % 100 % 100 %
1.55%107 7.66%107 2.86%107 1.70%107 1.17%107
(1,892)x(1,1472) 100 94 % 100 % 100 % 100 %
1.44%107 7.30%107 1.70%107 1.70%107 1.44%107
Table 1.3 - Results of Kolmogorov test -Smirnov for all models utilized.
1784x1472 w LN K GK LNT
Prob 100 % 97 % 100 % 100 % 100 %
d 2.84%107 11.10*10 2.20%107 2.61%107 2.4%107
(893,1784)x (1,1472) 100 % 93 % 100 % 100 % 100 %
2.92%107 12.20%10* 2.87%107 2.78%107 2.10%10
(1,892)x(1,1472) 100 94 % 100 % 100 % 100 %
2.44%107 9.30%107 2.70%107 2.70%107 1.90%10

Table 1.4 - Results of Kuiper test for all models utilized.
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1.2.2 HB06172 File

The Figure 1.15 shows the image considered for statistical analysis.

1000 b
1200 F-

1400 |

200 400 600 800 1000 1200

40

Figure 1.15 - Grass field for the HB06172 file.

The analysis has been carried out on the total image, on the homogeneous upper patch
(1,1000)x(1,1472), on the lower patch (1000,1784)x(1,1472) where we observe a deformation
of the terrain, and on the central patch (700,900)x(1,1472) where the deformation is well
evident.

In Figs 1.16-1.18 we show the results relating to the whole image and in Figs 1.19-1.30
the results of the patches.
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Figure 1.16 - Amplitude PDF of clutter data for the overall image (1784x1472).
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Figure 1.17 - Normalized moments for the overall image (1784x1472).
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Figure 1.20 - PDFs of the clutter for the patch (1000,1784)x(1,1472).
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Figure 1.21 - Normalized moments for the patch (1000,1784)x(1,1472).
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Figure 1.23 - Image with the upper patch (7,1000)x(1,1472).
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Figure 1.25 - Normalized moments for the patch (1,1000)x(1,1472).
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Figure 1.24 - PDF of clutter for the patch (1,1000)x(1,1472).
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Figure 1.27 - Image with the central patch (700,900)x(1
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Figure 1.29 - Normalized moments for the patch (700,900)x(1,1472).
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Figure 1.30 - Weibull paper for the patch (700,900)x(1,1472).

Again, the statistical differences between whole image and the three patches are

negligible, as also evidenced by the PDF parameters reported in Table 1.5. We can only

observe that the central patch is a little bit spikier than the other two.

All the models, but the log-normal, show a good fitting with the histogram. The results

of KS and Kuiper tests are reported in Tables 1.5 and 1.6. Both tests provide very similar

results for all the models.

Size of patch Weibull Lognormal K . GK LNT

¢ b |6 & |V apvoH b6 it
(1784x1472) 1.66 15.06 | 11.47 0.57 | 2.86 12528 | 0.28 11295 5.64 | 033 106.30
(1,1000)x(1,1472) 1.64 15.04 | 11.47 0.57 | 2.86 126.14 | 0.25 107.44 5.83 0.36  105.44
(1000,1784)x(1,1472) | 1.69 15.09 | 11.57 0.55 | 2.86 12421 | 0.36 140.87 4.76 0.29 107.43
(700,900)x(1,1472) 1.54 1427 | 10.62 0.62 | 2.18 118.50 0.19 86.65 5.98 0.48 92.05

Table 1.5 - Parameter estimates of models tested on HB06172 file.
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1784x1472 w LN K GK LNT

Prob 100 % 96 % 100 % 100 % 100 %
d 1.54%107 6.34%107 2.53%1072 1.36%107 1.01*107

(700,900)x (1,1472) 100 % 91 % 100 % 100 % 100 %
1.85%1072 7.76%10 1.05%107 1.67%1072 2.25%107

(1,1000)x(1,1472) 100 96 % 100 % 100 % 100 %
1.51%102 7.00%10 1.95%107 1.43*107 1.25%107

(1000,1784)x(1,1472) 100 % 95 % 100 % 100 % 100 %
1.70%107 7.15%107 2.39%1072 1.31%1072 0.99%107

Table 1.6 - Results of Kolmogorov -Smirnov test.

1784x1472 w LN K GK LNT

Prob 100 % 99 % 100 % 100 % 100 %
d 2.05%107 10.05*107 2.27%107 2.20%10 1.96%10

(700,900)x (1,1472) 100 % 93 % 100 % 100 % 100 %
2.34%1(2 11.32%107 2.02%10 2.64%107 10.00%*107

(1,1000)x(1,1472) 100 % 97 % 100 % 100 % 100 %
2.93%1(72 11.32%107 2.71%107 2.31%107 2.38%107

(1000,1784)x(1,1472) 100 % 97 % 100 % 100 % 100 %
2.24%1(7 11.13%1072 4.12%10 2.16%10 1.85%10
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Table 1.7 - Results of Kuiper test.




1.2.3 HB06173 File
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Figure 1.31 - Grass field for the HB06173 file.

The analysis has been carried out on the overall image (Fig. 1.31), on the patch
((400,1784)x(1,300)) which contains a man-made object (maybe a street), and on the patch
((800,1200)x(600,1000)) which encloses a very homogeneous region of terrain. All the
statistical results are summarized in Figs. 1.32-1.42 and in Tables 1.8-1.9. They are very

similar to those of the previous file.
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Figure 1.32 - PDFs of clutter for the whole image (1784x1474).
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Figure 1.33 - Normalized moments for the whole image (1784x1474).
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Figure 1.35 - Terrain image with the patch (400,1474)x(1,300).
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Figure 1.36 - PDF of clutter for the patch (400,1784)x(1,300).
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Figure 1.37 - Normalized moments for the patch (400,1784)x(1,300).
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Grass field with the patch (800,1200)x(600,1000).
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Figure 1.40 - PDF of clutter for the patch (800,1200)x(600,1000).
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Figure 1.41 - Normalized moments for the patch (800,1200)x(600,1000).
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Figure 1.42 -Weibull paper for the patch (800,1200)x(600,1000).
Size of patch Weibull | Lognormal K GK LNT
¢ b|é & |V alv o H p|é )
(1784x1472) 1.80 16.44 | 12.70 0.53 | 2.86 142.52 | 0.61 222.34 462 | 0.18 130.06
(400,1784)x(1,300) 1.63 14.67 | 11.13 0.58 | 2.86 120.45 | 0.30 121.25 493 | 0.37 100.08
(800,1200)x(600,1000) | 1.90 18.17 | 1420 0.50 | 2.86 169.11 | 79.5 1.57 0.45 | 0.08 162.08
Table 1.8 - Parameter estimates of models tested on HB06173 file.
1784x1472 W LN K GK LNT
Prob 100 % 98 % 99 % 100 % 100 %
d 1.06*10 6.46%107 5.30%107 0.85%10 2.68*%107
(400,1784)x (1,300) 100 % 91 % 100 % 100 % 100 %
1.47%107 7.74%107 2.37%107 1.85%10 1.92%10
(800,1200)x(600,1000) 100 96 % 100 % 100 % 100 %
0.65%107 7.58%107 5.29%107 1.23*%10 2.86%107

Table 1.9 - Results of KS test.
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1784x1472 w LN K GK LNT
Prob 100 % 97 % 100 % 100 % 100 %
d 1.98%107 11.12%107 6.47%1072 1.53*107 2.24%1072
(400,1784)x (1,300) 100 % 86 % 100 % 100 % 100 %
1.25%107 12.28%10 6.87%107 2.42%1072 2.74%1072
(800,1200)x(600,1000) 100 96 % 100 % 100 % 100 %
0.65*%107 7.58%107 5.29%10 1.23*107 2.86%107

Table 1.10 - Results of Kuiper test.

1.2.4 HB06174 File
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Figure 1.43 - Grass field image of HB06174 file

The analysis has been carried out on the overall image (Fig. 1.43), on the homogeneous
patch (1400,1784)x(1,400) (see Fig. 1.47), and on the patch (400,1000)x(800,1400) (Fig.
1.51). The statistical analysis is summarized in Figs. 1-43-1.54 and in Tables 1.11-1.12.
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Figure 1.44 - PDF of data clutter for the total image (1784x1476).
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Figure 1.45 - Normalized moments for the total image (1784x1476).
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Figure 1.48 - PDF of data clutter for the patch (1400,1784)x(1,400).
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Figure 1.49 - Normalized moments for the patch (1400,1784)x(1,400).
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Figure 1.52 - PDF of data clutter for the patch (400,1000)x(800,1400).
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Figure 1.53 - Normalized moments for the patch (400,1000)x(800,1400).
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Figure 1.54 - Weibull paper for the patch (400,1000)x(800,1400).

Size of patch Weibull | Lognormal K ~ GK LNT
é b | &6 & |V gy H o p |6 )
(1784x1472) 1.69 1587 | 12.17 055 | 2.86 137.68 | 0.30 128.16 592 | 0.30 118.59
(1400,1784)x(1,400) 1.83 17.76 | 12.77 050 | 2.86 164.34 | 1.02 360.99 4.18 | 0.14 15291
(400,1000)x(800,1400) | 1.56 15.25 | 11.45 0.60 | 2.18 134.44 | 021 100.27 6.10 | 0.47 106.50
Table 1.11 - Parameter estimates of models tested on HB06174 file.
1784x1472 w LN K GK LNT
Prob 100 % 88 % 100 % 100 % 100 %
d 1.15%107 8.16*10 2.03*107 1.52%107 1.20%107
(1400,1784)x (1,400) 100 % 86 % 100 % 100 % 100 %
1.10%1072 8.33*%10 5.82%107 0.78*107 1.33*107
(400,1000)x(800,1400) 100 96 % 100 % 100 % 100 %
1.41%107 8.73*%107 1.72%107 2.76%107 2.93*%107

Table 1.12 - Results of KS test.
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1784x1472 w LN K GK LNT
Prob 100 % 88 % 100 % 100 % 100 %
d 2.28%107 11.31*%107 4.03*1072 2.48%107 2.21%1072
(1400,1784)x (1,400) 100 % 86 % 100 % 100 % 100 %
1.83*1072 12.64%107 7.50%107 1.37%1072 1.96%107
(400,1000)x(800,1400) 100 96 % 100 % 100 % 100 %
2.76%107 12.94%10 2.37%1072 4.17%1072 4.82%1072

Table 1.13 - Results of Kuiper test.

1.2.5 HB06176 File
Figure 1.55 shows the image of this file. We can observe that this image is very
homogeneous, for this reason we have considered the whole image and one patch only. The

results are summarized in the following figures.
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Figure 1.55 - Grass field of HB06176 file.
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Figure 1.56 - PDF of clutter for the whole image (1784x1476).
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Figure 1.57 - Normalized moments for the whole image (1784x1476).
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Figure 1.59 - Image with the patch (600,1200)x(500,1000).
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Figure 1.60 - PDF of clutter for the patch (600,1200)x(500,1000).
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moment order

49



0.999

0.75
0.50

0.25

0.10
0.05

0.02
0.01

0.003

0.001

In(In(1./(1-F (x))))

10’

Figure 1.62 - Weibull paper for the patch (600,1200)x(500,1000).

Size of patch Weibull | Lognormal K . GK LNT
¢ b | &6 & |V a | vooH |6 1
(1784x1472) 152 12.07 | 973 0.62 | 1.98 10037 | 0.34 126.31 232 | 0.51 77.60
(600,1200)x(500,1000) | 1.54 12.96 | 9.64 0.62 | 2.18 97.81 | 0.27 104.13 2.99 | 4.88 76.63
Table 1.14 - Parameter estimates of models tested on HB06176 file.

1784x1472 w LN K GK LNT

Prob 100 % 99 % 100 % 100 % 100 %
d 2.02%1072 5.29%10 1.69%107 1.85%107 1.80%107

(600,1200)x (500,1000) 100 % 100 % 100 % 100 % 100 %
2.00%1072 5.56*%107 1.96%107 2.16%1072 1.80%107

Table 1.15 - Results of KS test.

1784x1472 w LN K GK LNT

Prob 100 % 100 % 100 % 100 % 100 %
d 5.66%107 8.45%10 2.85%107 2.67%1072 2.08*%107

(600,1200)x (500,1000) 100 % 100 % 100 % 100 % 100 %
5.77%107 8.71%10 2.76%107 4.07%1072 2.14*%107

Table 1.16 - Results of Kuiper test.
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1.2.6 HB06177 File
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Figure 1.63 - Grass field for HB06177 file.

Figure 1.63 shows the considered image, which represents a region of terrain mainly
homogeneous and a small area (on the right of figure) characterized by dense vegetation and
shadows. The analyzed patches of this image are ((1,800)x(1,800)), ((600,1200)x(800,1476))
and ((1400,1784)x(1100,1476)). The results of the statistical analysis are shown in Fig. 1.64-
1.78 and Tables 1.17-1.19.

The results of the patches (7,800)x(1,800) and (600,1200)x(800,1476) are similar to
those of the previous files and of the overall image. Almost all the models, but the log-
normal, we tested show a good fitting. Non-negligible differences are apparent in the results
relating to the smallest patch (71400,1784)x(1100,1476). The clutter is spikier (¢ =1), the
histogram presents longer tails and the log-normal model as well shows a good fitting. These
differences are due to the presence of dense vegetation and shadows, then, the area is not

more homogeneous.
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Figure 1.64 - PDF of data clutter for the whole image (1784x1476).
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Figure 1.65 - Normalized moments for the whole image (1784x1476).
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Figure 1.67 - Grass field in the patch (1,800)x(1,800).
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Figure 1.68 - PDFs of clutter amplitude for the patch (7,800)x(1,800).
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Figure 1.69 - Normalized moments for the patch (1,800)x(1,800).
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Figure 1.72 - PDFs of data clutter for the patch (600,1200)x(800,1476).
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Figure 1.73 - Normalized moments for the patch (600,1200)x(800,1476).
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Figure 1.75 - Patch (1400,1784)x(1100,1476).
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Figure 1.76 - PDFs of data for the patch (71400,1784)x(1100,1476).
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Figure 1.77 - Normalized moments for the patch (1400,1784)x(1100,1476).
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Figure 1.78 - Weibull paper for the patch (71400,1784)x(1100,1476).

Size of patch Weibull | Lognormal K GK LNT
¢ b| 6 & |V alv o H o p| 6 i
(1784x1472) 1.57 1421 | 10.66 0.60 | 2.46 116.04 | 0.25 104.88 499 | 045 92.66
(1,800)x(1,800) 1.76 15.50 | 11.97 0.53 | 2.86 127.72 | 0.61 204.05 2.85 | 0.21 114.85
(600,1200)x(800,1476) 140 12.13 | 957 0.67 | 1.33 109.12 | 0.18 86.62 4.76 | 0.72 76.16
(1400,1784)x(1100,1476) | 1.05 9.18 | 6.15 087 | 0.54 76.82 | 0.06 39.44 574 | 1.60 34.50
Table 1.17 - Parameter estimates of models tested on HB06177 file.
1784x1472 w LN K GK LNT
Prob 100 % 94 % 100 % 100 % 100 %
d 1.61*107 7.28%107 0.99%10 1.08*1072 1.73*107
(1,800)x (1,800) 100 % 99 % 100 % 100 % 100 %
1.87*107 5.96*107 5.10%107 1.50%107 1.43%10
(600,1200)x (800,1476) 100 % 91 % 100 % 100 % 100 %
2.46%107 7.71%107 2.81%1072 2.30%107 2.87%107
((1141000(;11748746))" 89 % 100 % 43 % 63 % 100 %
’ 8.01*%107 2.31*%107 12.00%107 10.32%10 4.86%107

Table 1.18 - Results of KS test.
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1784x1472 w LN K GK LNT

Prob 100 % 96 % 100 % 100 % 100 %
d 2.84%107 11.64%107 1.57%1072 1.99%107 2.76%1072

(1,800)x (1,800) 100 % 99 % 100 % 100 % 100 %
2.40%1072 9.93%1072 5.94%10 2.53%1072 2.47%1072

(600,1200)x (800,1476) 100 % 92 % 100 % 100 % 100 %
4.27%107 11.24%107 4.02%1072 4.02%1072 5.94%1072

((11410006117487‘2)‘ 73 % 100 % 65 % 36 % 100 %
’ 10.46%107 4.47%107 15.33*%107 18.11%107 7.84%107

Table 1.19 - Results of Kuiper test.

1.2.7 HB06188 File

200 400 800 1000
Figure 1.79 - Grass field of file HB06188 file.
Of this file we tested the whole image, a homogeneous patch ((800,1400)x(1000,1474))

and the patch ((1,600)x(1000,1474)), containing a man-made object (a street). Results are

summarized in the following figures and tables.
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Figure 1.80 - PDF of clutter for the whole image (1784x1474).
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Figure 1.81 - Normalized moments for the whole image (1784x1474).
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Figure 1.83 - Grass field in the patch (7,600)x(1000,1474).

62



normalized moments

S M I B
0 5 10 15 20 25 30 35 40
amplitude (H)
Figure 1.84 - PDF of clutter amplitude for the patch (7,600)x(1000,1474).

107

10 |

[S—
O»—
[

1 2 3 4 5 6
moment order

Figure 1.85 - Normalized moments for the patch (7,600)x(1000,1474).
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Figure 1.87 - Grass field in the patch (800,1400)x(1,800).

64



10™ |

107

PDF

107

10 i

0 10 20 30 40
amplitude (H)

Figure 1.88 - PDF of clutter amplitude for the patch (800,1400)x(1,800).
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Figure 1.89 - Normalized moments for the patch (800,1400)x(1,800).
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Figure 1.90 - Weibull paper for the patch (800,1400)x(1,800).

Size of patch Weibull | Lognormal K GK LNT
é bl s & |V a|v o H o p| 6 m
(1784x1472) 1.67 12.22 | 938  0.55 | 2.86 82.09 | 0.82 169.63 229 | 0.31  70.20
(1,600)x(1000,1476) 1.56 11.88 | 891  0.60 | 2.18 8133 | 0.76 167.45 1.86 | 046 64.66
(800,1400)x(1,800) 1.79 1257 | 971 053 | 2.86 82.49 | 2.75 23834 146 | 0.19 7598
Table 1.20 - Parameter estimates of models tested on HB06188 file.
1784x1472 w LN K GK LNT
Prob 100 % 98 % 100 % 100 % 100 %
d 1.87%107 6.63*107 4.13*107 1.23*107 1.19%107
(1,600)x (1000,1476) 100 % 99 % 100 % 100 % 100 %
2.53%107 5.55%107 1.93%1072 1.35%107 1.20%107
(800,1400)x (1,800) 100 % 96 % 97 % 100 % 100 %
1.79%107 6.94%107 6.68%107 1.84*%107 1.76%107

Table 1.21 - Results of KS test.
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1784x1472 W LN K GK LNT
Prob 100 % 99 % 100 % 100 % 100 %
d 2.50%107 10.97*%107 5.00%10 1.84%107 1.95%107
(1,600)x (1000,1476) 100 % 99 % 100 % 100 % 100 %
4.60%107 9.17%1072 2.80%107 2.21%1072 1.75%107
(800,1400)x (1,800) 100 % 96 % 97 % 100 % 100 %
2.58%107 10.97*%107 8.01*%107 2.12%1072 2.90%107

1.2.8 Conclusions

Table 1.22 - Results of Kuiper test.

From our analysis we can conclude that, in general, the clutter scattered by a grass field

is not very spiky a can be well modeled by Weibull, GK and K models. We used the

estimated shape parameter of the Weibull PDF as a measure of the spikiness of the clutter. In

our data, this parameter is, in average, close to 1.7 (for c=2 we have a Rayleigh distribution)

then the clutter is homogeneous. We obtained a much lower value only for the patch

(1400,1784)x(1100,1476) of the HB06177 file reported in Figure 1.75. For this patch c=1.054

and this difference is mainly due to the presence of dense vegetation and shadows.

To complete our statistical analysis we applied KS and Kuiper goodness-of-fit tests.

Both test provided very similar results, but they do not allow us to distinguish clearly between

the different models we used.
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1.3 Terrain with dense vegetation and trees

1.2.1 HB06202 file

T

. ; i Fa:
200 400 600  B00 1000 1200 1400

-

Figure 1.91 - Image of HB06202 file. Terrain with dense vegetation and trees.

We now consider the image of file HB06202 which represents, as shown in Figure 1.91,
a region with dense vegetation and trees. We performed same statistical analysis as for the
images with grass field on the whole image. The histogram and the moments are plotted in

Fig. 1.92 and 1.93 respectively.
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Figure 1.92 - PDF of data clutter for the whole image (1784x1478).
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Figure 1.93 - Normalized moments for the whole image (1784x1478)
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By observing Figure 1.92 we can conclude that none of tested models exhibits a good
fitting with the data. Based on this result, we introduced another model which takes into
account the presence of thermal noise that, maybe, is not negligible in the shadowed areas.
This new model is the “K+ thermal noise”. It is characterized by the following first order PDF

and moments [Far97]:

K+ thermal noise model

14

Ju) S 2
PDF p.(r)= (;(5)) -([r +Taé exp(— 2(r e )Jx exp[—%rjdr (1.26)

o0 0 v—1 2
Moments £{R* }= WA T a2 - Lol 1.27
oments { } F(V).([r .([T_l_o_éexp mxexp yT T (1.27)

To estimate the characteristic parameters v, u and o, we applied again the method of
moments. In this case we considered the moments of second, fourth and sixth order and we
rewrite their expressions as a function of the clutter-to-noise ratio CNR= ,u/ o¢ obtaining the

following analytical expressions:

E{R*}=252(1+ CNR) (1.28)
E{R4}=802[1+2CNR +MCNRZJ (1.29)
14
E{R®|= 408(12+36-CNR +37.cNR?- YL 10 v %ZV”)] (1.30)
14 14

We resolve the system of eqgs. (1.28)-(1.30) as a function of CNR, v and o . Then we

obtained u from the CNR value.
The result of this model is plotted in Fig. 1.94 and the estimated parameters are reported
in Table 1.22.
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Figure 1.94 - PDF of clutter amplitude: K+ thermal noise model.

- 5
M v (o

80.996 | 0.98159 | 5.3834*10°"

Table 1.23 - Parameters estimate of K+ thermal noise model.

Unfortunately the fitting is not good, and then we decided to change the parameter
estimation method. Instead of using the method of moments, we minimized the square

difference between histogram f{r) and K+ thermal noise curve p,(r), that is
. 2
Ozarg;nan(f(rl.)—pr(l;)) (1.31)

where 0 is the vector of parameters to estimate (z,v ,aé) and 7; (i=1,2,3,..) the vector of

data amplitude. Even with this new estimation method, the K+thermal noise model fails.
On these data we tested also the Generalized Compound (GC) model. The GC model

has been recently proposed for very high resolution data in [Ana99] as an alternative to the
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compound-Gaussian model. In the Generalized compound model the Gaussianity hypothesis
on the speckle is relaxed and the Generalized Gamma (GI") distribution is proposed for both

speckle and texture. The expression of the GI” is:

p(r;a,b,v) = al“b(v) (2] - exp[—(gj J r=>0 (1.32)

where a is scale parameter, v is the shape parameter and b is the “power” parameter. This

PDF is more general than Rayleigh and Gamma PDFs. The GI" PDF can be used to describe
distributions with long tails. The standard models for the clutter as Rayleigh (6=2, v=1),
lognormal (b,v—0,00), Weibull (v=1), and the Gamma (b=1) are special case of GI" PDF.

In this case the distribution of amplitude, conditioned to the texture, is given by:

fGr(r|S):srlzlv])(£)H exp{—&jlj x>0 (1.33)

s is the component of modulation (\/? ) which is GI” distributed:

__b (s e |5 »
fGr(S)—ar(Vz)(aj eXI{ (aj ] 520 (1.34)

The PDF of clutter » is GC distributed:

fGC(r):.TfGF(ﬂS)fGF(SﬁS (1.35)

If we replace (1.33) and (1.34) in (1.35) we obtain the integral representation of GC PDF:

i (rahb) =— b _rzmlTs,,z.Vz_blyl_l_ex _(i)bz_(ﬁjbl ds  (1.36)
GC s UsUshs Vs Vo F(Vl)r(vz) abz"z 0 p a S .
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In general, the integral that appears in the eq. (1.36) does not present a closed form. A closed

form exists only if b, = b, =b and the resulting PDF is called GC-GK:

b - bI2(v+v,)-1 #\P7?
fGK(r;a,b,vl,v2)=—(—j -Kv2_v[2[;j } >0 (1.37)

aF(vl)F(vz) a

where K (r) is the modified Bessel function. The moments for the GC-GK PDF are given by

the following expression:

F[k+v1)F(k+v2j
E[r]=a*—2 b (1.38)

To estimate the parameters characterizing the model, we used the same method applied
for the Generalized K model with generalized Gamma distributed texture, that is we

minimized the functional:

| (k)
J(v,v,,b)= -1 1.39
( 1 2 ) kZ:; mn (k) ( )
where m,,(k) is the normalized theoretical moment of order n
« 1) 1
L _E{}"}k _F (Vl‘f‘b)r (Vz +bj 1
(k)= =B o (140)
U (B r(f ] [r0rC2)]

while (k) are the moments experimentally estimated.

The parameter a is then given by:
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()r(F)r(5) i

The results of the GC-GK model are reported in Figs. 1.95 and 1.96. It is apparent that
the fitting is not good.
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Figure 1.95 - PDF of clutter amplitude.
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Figure 1.96 - Normalized moments.

In the Table 1.24 we report the parameters estimated for the GC model.

~ A A

a b v v,

0.078138 | 0.76288 | 6.127 | 5.9443

Table 1.24 - Parameters values for the GC-GK model.

The last model we tested on the data is the Inverse Gamma (IG). It is a particular case of
the Compound-Gaussian model, where the texture (7) PDF is the Inverse Gamma (as a

consequence 1/7 is Gamma distributed). The expression of the Inverse Gamma PDF is

[Bal05]:

fi(t;e. )= ﬂar;@r‘(“”)eﬁf (1.42)

where a is the shape parameter and f is the scale parameter.
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If the speckle amplitude is Rayleigh distributed, the amplitude of clutter is distributed such
that:

2 7ﬂr2+1

fR(r)zj ! e ﬂ’ rdr= 2r '[T_(’H)e P dr (1.43)
0 0

2
If we define x= pr +1, and replace it in eq. (1.43) we obtain the IGT (Inverse Gamma
T
texture) PDF:
K 2 1
folr)= 2p [xedx= T (fjf ) (1.44)
(Br*+1)" T(a)? (Br*+1)" I'(a)
The expression for the moments is
n+]
E{R"}=2ap j —Mldr (1.45)
,Br +1)
By applying the substitution k = S and the identities:
© z—1
B(zow)= [ ar = L) T(a+l)=a-T(a) (1.46)
0 (1 + ;) F(z + w)

F(Z+ljl“(a—;j )

Eq. (1.47) converges if and only if a > n/2.
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The results relating to this model are shown in Fig. 1.97 where the data histogram is
compared to the IGT PDF. To estimate a and f we used the MoM. The parameter estimates
are 0=1.2498 and $=0.016672. The fitting is not good.
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Figure 1.97 - PDF of clutter amplitude.

1.2.2 Texture and speckle estimation and statistical analysis
After testing some statistical model on the overall amplitude of the clutter from dense
vegetated areas, we performed a statistical analysis on speckle and texture separately. First we
considered the data of file HB06202 where each tested model failed in modeling the

amplitude histogram. Supposing that the clutter process is a compound process
r(n) = Jr(n)x(n), texture and speckle have very different correlation times and the speckle is

a unitary power process, we estimated them from the amplitude data. Due to the physical
nature of the texture that takes into account the space variations of the local power of the
image, it can be considered as a long time (or space) correlated process. Then the texture can
be supposed constant (or very slowly varying) on small patches of the image and it can be

estimated from the amplitude data as [Gin00]
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(i+)N, -1 (j+1)N,, -1

(1.48)

z-A(la])_

m=jN,,

where N, and N, are the number of samples in range and cross-range respectively used for
the estimation, then the dimensions (in pixels) of each patch. In performing this estimation we
fixed N,=N.,=10, without overlap. It is apparent from eq. (1.48) that every 100 samples of
clutter amplitude we obtained only 1 texture sample. The dimension of the square window has
been chosen as a compromise between accuracy of the texture estimate and variation time of
the texture itself. A larger window could improve the texture estimate only if the texture
would be constant in a larger space interval, otherwise the estimation calculates only an
average texture.

The speckle can be estimated by normalizing the data amplitude with respect to the

estimated texture, thus

r(k,m)

k,
wem= VT )

(j+DN,_, ] (1.49)

ke[iN,,(i+1)N,], me[JN

cr?

The speckle of file HB06202 is plotted in Fig. 1.98. It is a noise-like process even if,
somewhere, it is possible to see some residue of the texture structure.

On the speckle we performed a statistical analysis very similar to that carried out on the
amplitude. We used same models, Weibull, Rayleigh, K, GK, LN and LNT with same
notation even if LNT, as instance, refers to Gaussian compound model with Log-normal
texture and here we are analyzing the speckle. In this context we are interested in the
statistical model, not in its physical nature. The results are shown in Figs. 1.99 and 1.100. The
best fitting has been obtained with K and LNT PDFs, as verified in the Tables 1.25 and 1.26
where we report the results of KS and Kuiper tests.

The plot of the GK PDF shows a strange behavior that is due to a numerical problem in

the integration of eq. (1.14).
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Figure 1.98 - Image of speckle estimated by using matrixes /0x/0 without overlap.
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Figure 1.99 - PDF of speckle estimated with matrix /0x10.
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Figure 1.100 - Normalized moments of speckle estimated with matrix 10x/0.

1784x1472 w LN K GK R LNT
Prob 100 % 94 % 100 % 8 % 100 % 100 %
d 2.71%107 | 7.40%107% | 2.25*%107 | 17.70%107° | 4.30*107 1.76%107

Table 1.25 - Results of KS test on the speckle (matrix /0x10).

1784x1472 w LN K GK R LNT
Prob 100 % 90 % 100 % 36 % 100 % 100 %
d 2.92%107 | 12.82*%10% | 2.22*%102 | 18.14*107% | 6.73*107 2.27%107

Table 1.26 - Results of Kuiper test on the speckle (matrix /0x10).

Size of patch Weibull Lognormal K GK R LNT
¢ b | 6 |V a NV H S| m
(1784x1472) 1.71 096 |1 0.74 055 ] 2.86 0.50 | 1098 0.18 0.59 | 097 | 0.27 0.44

Table 1.27 Parameters estimate for the speckle (matrix /0x10).
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In the Table 1.27 we report the characteristic parameters values. Clearly the speckle is
not Gaussian distributed.
In Figure 1.11 we report the image of despeckled texture (window /0x/0 without

overlap). The structure of the wood is evident.

texture image

207
= 2.5

40
60

2
a0
100 |

1.5

120

20 40 60 80 100 120 140

Figure 1.101 - Image of texture estimated with a /0x/0 window without overlap.

We performed same estimation using also a 20-dimensional square window (instead of
a 10-dimensional window), without overlap. The following figures report the obtained results.
From Figure 1.102, representing the estimated speckle, we can observe that there is

again some residue of the texture, more evident than in Fig. 1.98.
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Figure 1.102 - Image of speckle estimated by using matrices of 20x20 elements without overlap.
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Figure 1.103 - PDF of speckle estimated with matrix 20x20 without overlap.
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Figure 1.104 - Normalized moments of speckle estimated with matrix 20x20 without overlap

texture image
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Figure 1.105 - Image of texture estimated with matrix 20x20 without overlap.
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Size of patch Weibull Lognormal K GK R LNT
¢ b |6 6 |V a |V H p | |6 m
(1784x1472) 1.49 091 | 0.68 0.62 | 1.74 0.50 69.25 1.48*10° 0.93 | 0.57 0.38
0.16
Table 1.28 - Parameters estimates for the speckle (matrices 20x20 without overlap).
1784x1472 \\4 LN K GK R LNT
Prob 100 % 98 % 100 % 99 % 89 % 100 %
d 1.96%10° | 6.64*10° | 1.10¥10° | 6.10¥10° | 8.03*10” | 2.15%10™
Table 1.29 - Results of KS test on the speckle (matrices 20x20 without overlap).
1784x1472 W LN K GK R LNT
Prob 100 % 98 % 100 % 100 % 94 % 100 %
d 2.39%107 [ 11.03*107 [ 1.46*107 [ 7.31*107 [ 12.20%10% | 2.66*10~

Table 1.30 - Results of Kuiper test on the speckle (matrixes 20x20 without overlap).

From Figure 1.103 we can observe that Weibull, K and LNT models are close to the

1.30 of KS and Kuiper tests are in good agreement with the figure of PDFs.

histogram. The best fitting is given by K and LNT models. The results in Tables 1.29 and

We completed the statistical analysis for this file by estimating the histogram of the

texture. To dispose of much more data, we decided to estimate again the texture using a 20-

dimensional matrix but with an overlap of 95% in range and 95% in cross range. The new

texture image is reported in Fig. 1.106. Fig. 1.107 and Fig. 1.108 show respectively the

histogram and the estimated cumulative distribution function (CDF) of the texture of Fig.

1.106. It is evident that, after a peak for low values, the histogram drops almost linearly in the

range [50, 560] then abruptly decreases for higher texture values.
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Figure 1.106 - Texture image of HB06202 file (matrices 20x20, overlap 95%)
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Figure 1.107 - Texture histogram of HB06202 file (20x20, overlap 95%).
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Figure 1.108 Texture CDF of HB06202 file (matrixes 20x20, overlap 95%).

1.2.3 Statistic analysis of the patches of HB06202 file

We repeated similar analysis on three patches of the figures, for speckle and texture. For
estimating the speckle we applied a 20x20 matrix without overlap and for estimating the
texture the same window but with and overlap of 95%.

The two patches in Figs. 1.109 and 1.115 depict shadowed areas, the patch in Fig. 1.121
and almost homogeneous wood.

The results of the statistical analysis are in the following figures. The texture histograms
of the shadowed areas show a high peak for very low values of the texture and then an almost
linearly decreasing tail for higher values. The behavior of the CDFs in Fig. 1.114 and 1.120
shows that 80 % of the texture values are lower than 20 (steep slope in the range [0, 20]
followed by smooth rise in the range [20, 700]). This trend is due to the low RCS of the
shadowed areas.

On the contrary, Figs. 1.123 and 1.124, relating to the wood area, are similar to those of

the overall image.
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The speckle of the shadowed areas exhibits a good fitting with K, LNT and GK models
but it is not spiky. As a matter of fact, the shape parameter of the K distribution, that is a
measure of the non-Gaussianity, is greater than 2 (for spiky speckle v < 2).

Actually, we expected to find only thermal noise in the shadowed areas, that is, almost
delta distributed texture and Rayleigh distributed speckle. The deviations from this model are
maybe due to the presence of double-bounce scattering from the trees and also some white

pixels in the patches originated by tree scattering.

R ﬁ.

200 400 600 800 1000 1200 1400
Figure 1.109 - Image of the patch (1100,1400)x(1,800).
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Figure 1.110 - PDF of the speckle for the patch (1100,1400)x(1,800).
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Figure 1.111 - Normalized moments for the speckle of the patch (1100,1400)x(1,800).
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Figure 1.112 - Texture of the patch (1100,1400)x(1,800).
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Figure 1.113 - Texture PDF for the patch (1100,1400)x(1,800)
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Figure 1.114 - Texture CDF for the patch (1100,1400)x(1,800)
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Figure 1.115 - Image of the patch (700,1000)x(800,1400).
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Figure 1.116 - PDF of the speckle for the patch (700, 1000)x(800,1400).
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Figure 1.117 - Normalized moments of the speckle of the patch (700,1000)x(800,1400).
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Figure 1.118 - Texture image of the patch (700,1000)x(800,1400).
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Figure 1.119 - Texture PDF of the patch (700,1000)x(800,1400)
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Figure 1.120 - Texture CDF of the patch (700,1000)x(800,1400)
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Figure 1.121 - Image of the patch (1,600)x(1,1478).
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Figure 1.122 - PDF of the speckle of the patch (1,600)x(1,1478)
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Figure 1.123 - Normalized moments for the speckle of the patch (7,600)x(1,1478)
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Figure 1.124 - Texture image of the patch (1,600)x(1,1478).
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Figure 1.125 - Texture PDF of the patch (1,600)x(1,1478)
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Figure 1.126 - Texture CDF of the patch (7,600)x(1,1478)
Patch size \%4 LN K . GK R LNT
& b |6 6 | Vv @ O I A
(1100,1400)x 1.80 0.97 0.75 0.53 | 2.86 0.50 | 79.25 2.65%10°0.26 | 0.98 | 0.18 0.46
(800,1400)
(700,1000)x(1,1478) 1.67 0.95 0.73 0.55 [ 2.86 0.50 | 69.81 1.74*10% 0.19 | 0.96 | 0.310.43
(1,600)x(1,1478) 1.45 0.90 0.67 0.63 1.56 0.50 | 32.36 2.60*10° 0.22 | 0.93 | 0.630.36

Table 1.31 Parameters of models utilized for the speckle analysis of HB06202 file.

Following the method previously described for the dense vegetation file, we analyzed

also speckle and texture of the grass field file HB06171, looking for another confirm of the

Gaussian-compound model.

In the following figures we report the speckle image, PDF and moments for estimated

speckle and texture, relating to the whole image of the HB06171 file. The speckle histogram

show a good fitting with the Weibull model whose estimated shape parameter is c=1.7

(almost Rayleigh distributed) and the texture histogram with generalized Gamma PDF. These
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results are in good agreement with those obtained for the clutter amplitude model. The

compound-Gaussian model is a good candidate to fit the grass field clutter.

speckle image
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Figure 1.127 - Image of the speckle of file HB06171.
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Figure 1.128 - PDF of speckle for the file HB06171 (matrices 20x20 without overlap)
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Figure 1.129 - Normalized moments of the speckle for the file HB06171.
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Figure 1.131 - PDF of texture of the file HB06171
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Figure 1.132 - Normalized moments of the texture for the file HB0O6171.
Image size w LN K GK R LNT

A A A A

A a A ) A2 A
¢ b o) o v U 4 H b o - m

(1784x1472) 1.70 0.96 0.74 0.55 2.86 0.50 0.51 0.75 2.64 0.97 | 0.28 0.44

Table 1.32 - Parameter values for the speckle of the file HB06171.

Image size r GI LN

1% A 1 A A A
# vioooH 5 &
(1784x1472) 17.74 15.28 1.05 29488 2.77 264.85 0.22

Table 1.33 Parameters of the texture for the file HB06171.

1.2.4 Conclusions
We performed a statistical analysis on clutter amplitude, texture and speckle scattered
by grass fields and woods. Based on our results we can conclude that the compound-Gaussian

model presents a good fitting with the data relating to the grass. These results are confirmed
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by amplitude and both texture and speckle histograms. The speckle is Rayleigh distributed
and, the texture Gamma, GI" or LN distributed.

On the contrary the compound-Gaussian model fails in fitting the wood clutter. None of
the tested model shows a good agreement with the amplitude and texture histograms, and the

speckle is clearly heavy tailed (non-Rayleigh distributed).
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CHAPTER 2

FREQUENCY ANALYSIS

In this chapter we show the results of the frequency analysis carried out on the MSTAR
data. The power spectral density (PSD) of the data has been estimated by means of the

weighted periodogram, defined as:

2

1

f w(n)x(n)e "

= 2
ﬁ;|w(”)|

S(ej"’)= (2.1)

where x(n) is the nth element of the data vector x and w is the weighting window. In our case
N=2048 and w is a rectangular window with unitary amplitude.
The autocorrelation function can be estimated indirectly, as the inverse Fourier

transform of the PSD, or directly from the data, as:

1 N—l—‘m‘

R, (m)= Nl Z x(n)x" (n+m) (2.2)

where m is the time or space lag and the symbol * stands for the complex conjugate.

Similarly, we can estimate the autocovariance function as:

R 1 N—1-|m| X e
C, (m)zN Z (x(n)—?]X)(x(n+m)—77X) (2.3)
_|m n=0
N-1
where 77, = N™' ) x(n) is the estimated mean value of data vector x.

I
(=}

n
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2.1 Frequency analysis of grass field clutter

2.1.1 HB06171 File

We consider first the image of Figure 1.1, showing a homogeneous grass field, where
there is not shadowing effect. We estimated on the amplitude, texture and speckle of the
overall image both autocovariance and autocorrelation functions, then we repeated same
analysis on the patch (893,1784)x(1,1472) of Figure 1.9.

To estimate the correlations and the covariances we applied eqs. (2.2) and (2.3)
respectively first on each row (cross-range) and then on each column (range) of the image. To
obtain the final correlation and autocovariance function in range and cross-range we averaged

all the estimated functions in range (rows) and in cross-range (columns), that is

Rm) == 3" Reym) and €, (m) =3, (m) (2.3)

k=1

where K is the number of rows or columns of the image and R,,, C v+ are the estimated

correlation and covariance relating to the kth row or column.

In the figures 2.1-2.12 we report all the results we obtained. Figures 2.1, 2.2 and 2.3
represent the autocovariance for speckle, texture and data amplitude respectively. We can
observe that the speckle and data amplitude are almost white (delta-correlated), texture
autocovariance presents a smoother slope than speckle and amplitude. Figures 2.4, 2.5 and 2.6
relate to the cross-range direction and they show a trend similar to that of the range direction.
We notice that, generally, along the range direction, the decreasing of the covariance is faster
that along the cross-range direction. This is due to the decorrelation effect introduced by the
shadow that is heavier in the illumination direction than in the orthogonal direction.

In the figures the autocovariance functions have been normalized with respect to their

maximum value.
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Figure 2.1 - Range autocovariance of the speckle for the whole image (1784x1472).

texture autocovariance
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Figure 2.2 - Range autocovariance in range of texture for the whole image (1784x1472).
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Figure 2.3 - Range autocovariance of the amplitude for the whole image (1784x1472).
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Figure 2.4 - Cross-range autocovariance of the speckle for the whole image (1784x1472).
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texture autocovariance
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Figure 2.5 - Cross-range autocovariance of texture for the whole image (1784x1472).
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Figure 2.6 - Cross-range autocovariance of the amplitude for the overall image (1784x1472).
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Figure 2.7 - Range autocovariance of the speckle for the patch (893,1784)x(1,1472).
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Figure 2.8 - Range autocovariance of the texture for the patch (893,1784)x(1,1472).
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Figure 2.9 - Range autocovariance of the amplitude for the patch (893,1784)x(1,1472).
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Figure 2.10 - Cross-range autocovariance of the speckle for the patch (893,1784)x(1,1472).
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Figure 2.11 - Cross-range autocovariance of the texture for the patch (893,1784)x(1,1472).
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Figure 2.12 - Cross-range autocovariance of the amplitude for the patch (893,1784)x(1,1472).
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To complete the covariance analysis we estimated as well the 2-dimensional function of

the texture as:

1 M —1-|m| L-1]|

> (D -5,)(2(n+m,l+k)-1,)] (2.4)
ML = 4

C(m,k) =
In Figures 2.13 and 2.14 we show the 2-dimensional covariance function of clutter amplitude
as 3D-plot and as a map. The colormap is reported in the figures as a reference. Again, it is

apparent that the decorrelation length is greater in cross-range than in range direction.
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Figure 2.13 Texture three—dimensional autocovariance function for total image of HB06171 file.
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Figure 2.14 Texture three—dimensional autocovariance function for total image of HB06171 file.

To calculate the periodogram of the data we applied eq. (2.1) to each row and column of
the image, then, as for the covariance function, we averaged on all the rows and the columns
and we obtained an averaged periodogram for both range and cross-range directions.

In figures 2.15 and 2.16 we report the mean periodogram in range and cross-range
respectively for the whole image, in figures 2.17 and 2.18 for the patch (893,1784)x(1,1472).
The behavior of the periodogram, in both directions and in the whole image and the patches,
is very similar. It presents a peak at the null frequency due to the DC component of the data,
then it decreases almost linearly in all the frequency range.

Figure 2.15 shows two spurious frequency lines at /=0.1 and 0.27. They are maybe due

to some EM interference.
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Figure 2.15 — Mean periodogram in range for the whole image (1784x1472).
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Figure 2.16 — Mean periodogram in cross-range for the overall image (1784x1472).

112



Periodogram

-05 -04 03 -02 -01 0 01 02 03 04 05

normalized frequency

Figure 2.17 - Mean periodogram in range for the patch (893,1784)x(1,1472).
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Figure 2.18 - Mean periodogram in cross-range for the patch (893,1784)x(1,1472).
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2.2 Frequency analysis of the clutter of dense vegetated areas

2.2.1 Periodogram of file HB06202

In this section we consider the file HB06202 (Figure 1.91). We report the results of
frequency analysis, in particular the average periodogram calculated in range and cross-range
direction in semilog scale. We report also the autocorrelation and autocovariance functions of
data, speckle and texture. The autocovariance function has been calculated for both directions
(range and cross-range) for the overall image and for three patches.

Figure 2.21 reports the average periodogram calculated in range for the whole image
while Figure 2.22 reports the periodogram in cross-range direction.

The first patch that we analyzed is the (1100,1400)x(1,800), highlighted in Figure 1.107.
The behavior of the average periodogram in range and cross-range is reported in figures 2.23
and 2.24 respectively. The second patch has dimensions (700,1000)x(800,1400) (Figure
1.115) and, as the first, relates to a shadowed area. Conversely, last patch we considered
(1,600)x(1,1478) covers a region with dense vegetation as evident in Figure 1.121. The
periodograms are plotted in Figs. 2.25-2.28.

There are not significant differences in range and cross-range directions.
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Figure 2.21 - Average periodogram in range for the whole image (1784x1478).
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Figure 2.22 - Average periodogram in cross-range for the whole image (1784x1478).
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Figure 2.23 - Average periodogram in range for the patch (1100,1400)x(1,800).
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Figure 2.24 - Average periodogram in cross-range for the patch (1100,1400)x(1,800).
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Figure 2.25 - Average periodogram in range for the patch (700,1000)x(800,1400).
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Figure 2.26 - Average periodogram in cross-range for the patch (700,1000)x(800,1400).
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Figure 2.27 - Average periodogram in range for the patch (7,600)x(1,1478).

117



Periodogram

-0.5 -04 -03 -02 -01 O 01 02 03 04 05
normalized frequency

Figure 2.28 - Average periodogram in cross- range for the patch (1,600)x(1,1478).

2.2.2 Correlations of HB06202 file: wood and trees

In the following figures we report the estimated autocovariances for the whole image
and for the patch (893,1784)x(1,1472), in range and cross-range directions.

By observing figures 2.31 and 2.35 of speckle autocovariance we can notice that the
covariance is zero already after 2.5-3 m both in range and in cross-range. Moreover, the
mainlobe of the covariance function seems to be larger than in the case of grass field (see
figures 2.1 and 2.4). This effect could be due to the presence of a texture residual contribution
in the estimated speckle.

The amplitude covariance in Figure 2.34 and 2.37 is mainly influenced by the
covariance of the speckle, and then it presents a fast drop to zero. The texture covariance, on
the contrary, shows a slow decreasing, particularly in cross-range direction (see Fig. 2.36).
We repeated same analysis on other files and patches; we obtained similar results even if,
often, the decreasing of the texture covariance in cross-range is faster than in Fig. 2.36. The
behavior of Fig. 2.36 could be due to a particular structure of the wood in the image of file

HB06202.
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In Figures 2.38-2.43 we report the 3D-covariance of the texture, estimated for the whole
image (figs. 2.38 and 2.39), for the patch (700, 1000)x(800,1400) (figs- 2.40 and 2.41) and for
the patch (1,600)x(1,1478) (Figs. 2.42 and 2.43). The long covariance length of the texture in

cross-range direction is well evident in Fig. 2.38.

speckle autocovariance

meters

Figure 2.31 - Autocovariance in range of the speckle for the whole image (1784x1478).
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texture autocovariance
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Figure 2.32 - Autocovariance in range of the texture for the whole image (1784x1478).

Data autocovariance
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Figure 2.34 - Autocovariance in range of the data amplitude for the whole image (1784x1478).
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Figure 2.35 - Autocovariance in cross-range of the speckle for the whole image (1784x1478).
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Figure 2.36 Autocovariance in cross-range of the texture for the whole image (1784x1478).
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Figure 2.37 Autocovariance in cross-range of the data amplitude for the whole image (1784x1478).
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Figure 2.38 - Texture three—dimensional autocovariance function for total image of the file HB06202.
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Figure 2.39 - Texture three—dimensional autocovariance function for total image of the file HB06202.
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Figure 2.40 - Texture three—dimensional autocovariance function for the patch (700,1000)x(800,1400).
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Figure 2.41 - Texture three—dimensional autocovariance function for the patch (700, 1000)x(800,1400).
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Figure 2.42 - Texture three—dimensional autocovariance function for the patch (7,600)x(1,1478).
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Figure 2.43 - Texture three—dimensional autocovariance function for the patch (7,600)x(1,1478).

2.3 Theoretical texture correlation models

As shown in the previous section, the speckle is almost white in all the images. The
residual correlation is manly due to the oversampling (the pixel size is on the order on 0.2 m,
the system resolution is on the order of 0.3 m). On the contrary, the texture is spatially
correlated in both range and cross-range directions from the underlying nature of the terrain
and vegetation illuminated by the radar.

In [Pos93] the author presents 3 different models for the autocovariance coefficient of
the texture. In the first, referred to as Pure Gaussian (PG), the spatial autocovariance of the

texture is assumed to have a two-dimensional Gaussian shape. Thus:

2 2
X, — X —

Cro (X5 %, V15 Y55 %)> V) = €XP _[ : 2j _(Jﬁ yzj (2.5)
Xo Yo
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where x,, x,, y, and y, are the spatial positions of the texture, x, and y, are the

decorrelation lengths of the backscattered field, takes as the e points of the assumed two-
dimensional Gaussian shaped autocovariance function.

In the second texture model, the spatial autocovariance is assumed to have a two-
dimensional Gaussian shape, modified by the presence of a range cosine factor, the purpose of
which is to produce negative power covariances (shadows) in the range direction, a
phenomenon particular evident in tree images. This model, called Shadowed Gaussian (SG)

introduces another parameter, the range shadowing length y;. The SG model is given by:

2 2
' X, — X — y —
Co(X)5 %, 115 V25 X0 Vo Vo) = €XP _( 1 2} _(yl yzj - COS —O(M} (2.6)
Xo Yo Yo Mo

When y,/y; goes to zero, the SG model is identical to PG.

In the third model we considered, the spatial autocovariance of the texture is assumed to
have a two-dimensional exponential shape modified by the presence of the same range cosine
term as the SG model. The exponential form for the texture autocovariance yields a slower
decay in the covariance than the Gaussian form. This model is called Shadowed Exponential

(SE):

2 2
: X=X =Y Yo i)
CSE(xlaxzaylayz;xmymyo):exp _\/EgJ +(¥j 'COS|:_?[¥J} (2-7)
X0 Mo Yo Mo

The texture autocovariance function for the Pure Gaussian case is separable, and can be

written as the product of a Gaussian in cross-range and a Gaussian in range direction. The

Shadowed Gaussian shape is separable as well. The Shadowed exponential is not separable.

2.4 Results

We tested all the three theoretical models of the texture covariance on our data. To

estimate the parameters x,, y, and y, we used the central row C(m,0) and column of the

covariance matrix C(0,k), normalized with respect to the maximum value C(0,0), estimated
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as in eq. (2.). So doing we separated the estimation along the two directions, range and cross-
range. In detail, to estimate the parameter x, of the PG and SG models, we fixed y, =y, and
we minimized the mean square error between the theoretical and the estimated covariance of

the central row C(m,0), that is

| e [ oom,0) x(m) 2
X, =min Z (0.0) —exp| — (2.8)
Xp m=—Nmc/2 s xO

where N, is the number of column in the texture covariance matrix, and x(m) is the lag
position with respect to the axis origin along the cross-range direction.

To estimate y, for the PG model we pose

2

Nmr/2—1 2
Jy=min| > M—exp _[ 2B (2.9)
Yo k=—Nmr/2 C(Ov 0) yO

where N, is the number of column in the texture covariance matrix, and y(k) is the lag
position with respect to the axis origin along the range direction.

To estimate y, and y, for the SG model we pose

2

Nmr/2-1 2
oot —min| S| COB [mj y_(mj 2.10
YooY k=—Nmr/2 C(07 0) yo yo yo

To estimate the parameter x, for the SE model we have:

2
Nmc/2-1
% =min| Con0) _ p| | XM (2.11)
X m=—Nmc/2 C(09 0) Xo
and for y, and y,
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HBO06195 representing a wood, a grass field and shadow respectively. In Figure 2.43-2.60 we
plot the theoretical models compared to the estimated texture covariance and in Tables 2.1-2.3
we report the values of the estimated parameters and the minimum mean square error

(MMSE) for each model. In all the analyzed cases the best fitting is provided by the

Ay )
Vo> Yo =Ml

it ek [ (v (k)
Yoo k_wz,:,,,./iC(o,O) eXp[ ( Y ﬂco{y;[ Y

shadowed exponential model.
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We report here the results of our analysis performed on three patches of the file
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Figure 2.43 — Texture covariance, grass field, range direction.
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Figure 2.45 — Texture covariance, grass field, range direction.
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Figure 2.46 — Texture covariance, grass field, cross-range direction.
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Figure 2.47 — Texture covariance, grass field, range direction.
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Figure 2.48 — Texture covariance, grass field, cross-range direction.

Model X, Vo j;o MMSE (cross-range) MMSE (range)
PG 2.6m 2.6m - 55107 8.3:107
SG 2.6m 26m |104m 55107 8.3:107
SE 2.6m 2.6m 40 m 24107 6.6:107

Table 2.1 — Estimated parameters and MMSE, grass field.
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Figure 2.49 — Texture covariance, wood and trees, range direction.
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Figure 2.50 — Texture covariance, wood and trees, cross-range direction.

132



Autocovariance

Autocovariance

Estim.

—<— SG m

.-50 40 -30 -20 -10 O 10 20 30 40 50
meters

Figure 2.51 — Texture covariance, wood and trees, range direction.
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Figure 2.52 — Texture covariance, wood and trees, cross-range direction.
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Figure 2.53 — Texture covariance, wood and trees, range direction.
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Figure 2.54 — Texture covariance, wood and trees, cross-range direction.
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Model X, Yo j’o MMSE cross-range MMSE range
PG 5.6m 4.0m - 2.9-10° 7.0-10°
SG 5.6m 60m | 44m 2.9-10° 6.7-107
SE 5.6 m 72m | 52m 9.0-10™ 4.8:10°

Table 2.2 — Estimated parameters and MMSE, wood and trees.
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Figure 2.55 — Texture covariance, wood and trees, range direction, file HB06192
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Figure 2.56 — Texture covariance, wood and trees, cross-range direction, file HB06192.
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Figure 2.57 — Texture covariance, wood and trees, range direction, file HB06192.
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Figure 2.58 — Texture covariance, wood and trees, cross-range direction, file HB06192.
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Figure 2.59 — Texture covariance, wood and trees, range direction, file HB06192.
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Figure 2.60 — Texture covariance, wood and trees, cross-range direction, file HB06192.

Model X, P P MMSE cross-range MMSE range
PG 8.0 m 52m - 25107 4.0-107
SG 8.0 m 52m | 192m 25107 4.0-10°
SE 8.8 m 7.2 m 7.6 m 1.2-107 2.5:107

Table 2.3 — Estimated parameters and MMSE, wood and trees, file HB06192.

2.5 Conclusions

Based on our results, we can conclude that, both for trees and grass field, the speckle is
an almost-white process. The residual correlation is mainly due to the system oversampling.
The covariance of the amplitude is mostly influenced by the covariance of the speckle, then
the amplitude as well is an almost-white process. Conversely, the texture, that takes into
account the structure of the vegetated areas, presents a slowing decreasing covariance,

especially in cross-range direction and in dense vegetated areas. To deepen our analysis, we
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tested three theoretical models for the texture covariance, the Pure Gaussian, the Shadowed
Gaussian and the Shadowed Exponential. The best results have been provided by the
shadowed exponential model both on trees and grass and in both range and cross-range
directions. For the grass field the correlation length, as defined for the SE model, is on the

order of 3 m in range and cross-range, for the wood on the order of 7 m.
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CHAPTER 3
EXTENDED SPECKLE ANALYSIS

3.1 Introduction

In this chapter the statistical analysis of the non Gaussian speckle regime is extended,
to get a flavor of the extent to and of the grade with which long tailed deviations from the
classical Gaussian regime are found in high resolution SAR images of natural landscape
areas. This analysis has been supported by four real data sets; each one has different
characteristics like the presence or the absence of fields, forests, urban agglomerates and
artificial elements (roads, guard rails, pylons). Moreover, the SAR sensors that acquired the
images have different operating conditions: resolution, band, polarization, and illumination
angle.

The approach used for the analysis is the same for each set: the first step consists in a
visual inspection of the scene to understand which are the areas including nuisance elements
like guard rails or pilons, and which are the areas containing interesting areas of terrain clutter
(fields or forests). In a second time we applied the estimation algorithms of the speckle model
parameters, and tests of the goodness of fit.

There are two classes of estimators and tests: the first class is used to investigate the
speckle fluctuactions to find the presence of long tailed speckle, the second class, which
includes SNR estimation and a phase uniformity test, is used to confirm the results of the first
class. In fact, some results could be degraded by a low SNR, or in a second way, the speckle
phase could be not uniform. The statistical model that we use for fitting neglects thermal
noise, thus, when SNR is not high enough, we choose to drop the model estimates. Also, for
the non Gaussian speckle regime on natural areas, in which we are interested, it is expected
that a random walk with a low number of effective scatterers should produce uniform phase
like in the classical Gaussian case [Oli98], 1.e. a circular distribution of the complex data. If
this does not happen, which may be due e.g. to a predominant scatterer, we drop the model
estimates. Summarizing, the first class of results provide the information for the long tailed
speckle research; however, if these results are not confirmed by positive results in the second

class of tests, they loose significance and are dropped.
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3.2 Statistical models

For the speckle envelope model to be fit to the pixel amplitudes, the long-tailed
Weibull distribution is assumed in this chapter. It accounts for deviations of the complex
speckle pdf from the in phase and quadrature Gaussian components, i.e. Rayleigh envelope,
shape parameter ¢ less than 2 meaning long-tailed pdf (we recall that the Weibull pdf
coincides with the Rayleigh pdf when ¢=2). The Weibull model is intended here to model the
speckle fluctuations only; for non-uniform texture scenes, the texure variations could be
wrongly attributed to the speckle. Because of this problem, investigating non-Gaussian
speckle statistics in real data is a difficult task, since speckle fluctuations and texture
variations mix together to give the overall data pdf. To examine the speckle pdf, decoupling
from texture effects is necessary. To this aim, different procedures have been applied and
tested.

First, direct fitting of the Weibull speckle model over small possibly visually
homogeneous [Oli98] image areas (patches) is considered. Unfortunately, arbitrarily small
patches cannot be adopted to guarantee highly constant texture, since the too low number of
pixels would result in inflated estimation variance. This method is expected to be intrinsically
the less accurate, being sensible to possible texture variations inside the patch. Estimation of
the scale and the shape parameters of the Weibull speckle pdf is carried out by classical
statistical moments matching. Here, an overdetermined system of equations is used to fit the
first 3 moments.

Second, for a better texture decoupling fitting to the data is carried out of a generalized
compound model of the overall pdf, accounting for both speckle and texture fluctuations. In
particular, the classical Gamma model for the texture is assumed, while speckle envelope is
assumed again to be long-tailed Weibull distributed. The overall pdf is a Gamma-Weibull
model [Ana99], which is characterized by three parameters: a scale parameter, a Gamma
shape parameter v coding the variability of texture (when v — o the texture is constant),
and the Weibull shape parameter c¢. Their joint estimation is carried out by overdetermined
moment matching (first 5 moments) on large image data blocks, to accurately estimate the
high-order moments [Ana99]. A possible expected problem from this procedure is sensivity to

deviations of the texture from the classical Gamma model.
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Finally, an approach that is expected to be more robust is to estimate the texture and
then to compensate for it, by scaling the real data to bring the speckle to constant (unitary)

power. After that, it is possible to proceed with speckle fitting.

3.3 Phase uniformity test and SNR estimation

To confirm the estimation results it is important to check our working hypotheses. The
random walk model in which we are interested presumes an uniform distributed phase; also,
neither the Weibull nor the Gamma-Weibull models account for thermal noise, thus we
assume a high SNR. Thus, for each patch or block where we get parameter estimation we
have to carry out a phase uniformity test and an SNR estimation.

The first is carried out by a Kolmogorov-Smirnov test for the hypothesis of uniform
phase. It processes the pixels phase and then provides a binary response: uniform distributed
phase or not. To check the SNR, we have to estimate noise power first. This is done by
assuming that where the speckle is very weak, only thermal noise is present in practice.
Accordingly, with a mobile window filtering of the patch size on the intensity image we
reduce the speckle variations. The minimum value found is assumed as the noise mean power

(N, ). Then, by using the intensity values P of the patches, or by calculating the mean
intensity P on blocks, we obtain SNR as follows: P/N,=(P.+N,)/N,=SNR+1, where P,

N

1s the mean power of the signal component; thus, SNR =P/ N, —1.

3.4 First data set

The data are from the Neckar river valley, Germany, with agricultural and hilly forest

areas, as shown in fig. 3.1. The data have been acquired by the AER-II X-Band SAR from

FGAN, Im range resolution, incidence angle (from the horizontal direction) 30°, VV-

polarization.
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Figure 3.1 - SAR scene.

It is possible to see a central field area, two lateral hilly forest areas and a bridge with three
guard rails crossing the scene.

In a first time, we applied a direct Weibull fitting to the amplitude data from patches
with dimension 20x50 (1000 pixel) in range and in azimuth, respectively, and also 11x25 (275
pixel). From a visual inspection we can infer that in some of these patches the texture is not
highly constant, especially for the 20x50 case. However, further decreasing the patch
dimension, and so the number of the pixels, reduces the statistical accuracy of the estimation
for constant texture. So, using 20x50 and 11x25 pixels there are problems with texture, but
less pixels do not return an accurate estimation (too high rmse and positively biased
estimation).

The following figure shows with a color code the results of the direct Weibull shape
parameter estimation for each patch: blue color codes a bad fitting (sum of the percentage

differences between theoretical and estimated moments larger than 15%), or a non uniform
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distributed phase in the patch, while the others colors identify the shape parameter values as
from the color bar. For the 20x50 case, the minimum detected shape parameter (maximum

long-tailed deviation from the classical regime) is 0.8.

RG.PATCHES

10 20 30 40 50 60 70 80 80 100 110
AZ PATCHES

Figure 3.2) - Shape parameter, patch: 20x50 (rg. x az.).

However, it is noted how a lot of Non Gaussian speckle patches are detected where there are
sudden and deep texture variations, thus in these patches it is expected that direct Weibull
fitting estimates larger deviations from the Gaussian speckle regime than the reality. This is

also substantiated by the following analysis using 11x25 patches:

3 Here and in the following maps, values of ¢ > 2 are saturated to 2.
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Figure 3.3 - Shape parameter, patch: 11x25.

We can see that the deviations from Gaussianity tends to reduce. This confirms that, if we
want to get a precise estimation of the shape parameter ¢, we have to better discern the
speckle from the texture.

In this framework, we applied the Gamma-Weibull fitting on large blocks (160x400 in
range and azimuth, respectively, with 50% overlap). This analysis provides the following

shape parameter map. Again, the blue color codes bad fitting or non uniform phase.
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Figure 3.4 - Shape parameter, block: 160x400.

Excluding blocks containing the bridge, the maximum detected deviation from Gaussianity is
now shape parameter ¢ equal to 1. Thus, the values of ¢ are quite similar to those found with
critical Weibull only fitting, so we expect that the texture is not Gamma distributed. Non
accurate modelling is also indicated by the several blue blocks.

In the third analysis method, we estimate the texture in the scene by moving window
filtering with a box of the patch size, and then compensate the data for it. In particular, texture
1s estimated on patches of size 11x25 (rg. x az.). This size was choosen since from a visual
inspection the typical size of tree canopy in the forest area is of this order. However, Fig. 3.5
shows that where the texture is very variable, the compensation procedure leaves a residual

texture.
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Figure 3.5 - Scene after texture depuration.

Using a smaller patch size for texture estimation would enhance the spatial accuracy of the
estimates, but at the cost of inflated variance of the estimates. Thus, we keep compensation
with 11x25 patches, and reduce the influence of possible residual texture on the subsequent
Weibull parameter estimates by carrying out fitting again on large blocks. Doing this, the
influence of possible local residual texture is subject to a diluition effect which makes the
method robust. Using again the block size 160x400, the result is shown in Fig. 3.6. With this
method the maximum detected long-tailed deviation from the Gaussian speckle regime is
more limited than before, the minimum shape parameter being 1.44, for the block of index

(10,3) in range and azimuth, respectively, which is in the forest area.
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Figure 3.6 - Shape parameter, block: 160x400.

The spatial extension of the estimated deviations from the Gaussian speckle regime
has also been quantified by computing the histogram of the shape parameter values of the

12x13=156 blocks, see Fig. 3.7.
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Figure 3.7 - Histogram of C .

Shape parameter values lower or equal to 1.5 appear in 3% of the image area, values lower or
equal to 1.8 appear in 60% of the area (mostly in the forest area, see again Fig. 3.6).

To complete the analysis, we also checked if the SNR is high enough to neglect the
thermal noise in the fitting model. The estimated SNR on the blocks is shown in Fig. 3.8. A

high SNR is present in each block (minimum value is 22dB).
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Figure 3.8 - SNR map in dB, block: 160x400.

Also, we show the goodness of fit for the result of the most interesting block, that with rg. and
az. index (10,3). To this aim, Fig. 3.9 shows a comparison between the theoretical moments
of the model (for the estimated parameters) and the estimated moments from the real data. All

moments are normalized to the moment of first order.
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Figure 3.9 - Moment fitting for block (10,3).

The first 5 moments of a Weibull-pdf with shape parameter 1.44 follow very well the
experimental moments. Only the sixth moment is fitted with a slightly lower precision. Also,
in Fig. 3.10 we compare the fitted Weibull pdf with the histogram of the compensated real
data, again for block (10,3).
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Figure 3.10 - Pdf fitting for block (10,3).

It is apparent how the long-tailed pdf (Weibull with shape parameter 1.44) fits the data better
than a Rayleigh pdf with same power.

3.5 Second data set

The data are from Oberpfaffenhofen, Germany, with grass, forest, and buildings areas,
as shown in Fig. 3.11. The data have been acquired by the E-SAR L-Band SAR from DLR,
1.5m range resolution, HH-, VV-, and HV-polarization.
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Figure 3.11 - SAR scene (HH-pol.).

Unfortunately this SAR scene contains a number of pixels lower than the first data set.
Moreover, it is not possible to estimate the speckle Weibull shape parameter on blocks with
size 160x400 as in the first data set, since these blocks would include a high number of
nuisance elements like buildings or pilons. Thus, we now use blocks with size 40x100 in
range and azimuth, respectively. After checking with a visual inspection the typical size of
tree canopy, we mantained the patch size for texture estimation and compensation at the same
value (11x25) as before.
The following figure shows the map of the estimated shape parameters for the image

with HH polarization. As usual, blue blocks are blocks where fitting is bad or phase is not

uniform.
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Figure 3.12 - Shape parameter, block: 40x100.

Discarding results from blocks containing buildings, for the blocks including grass fields or
forest only we find a minimum shape parameter 1.78 in block (3,1). Thus, the detected
deviation from the Gaussian speckle regime on natural areas is less sensible than in the
previous X-Band data set. This can be explained by the penetration of the L-band radiation in
the layers of the vegetated areas. Altough SAR resolution is high, the presence of distributed
scatterers along the elevation direction makes the number of effective scatterers high enough
to generate a more classical speckle regime.

We also notice that many blocks are blue coded in Fig. 3.12. In fact, for many of these
blocks the check on model and experimental moments reveals that the model does not fit very
well the amplitude of the data. The remaining blue blocks have non uniformly distributed
phase according to the Kolmogorof-Smirnov test. The reason can be the presence of many
pilons and other nuisance elements like buildings which produce a dominant deterministic

scattering. Which blocks are declared with non uniform phase is shown in the next figure.
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Figure 3.13 - Non uniform phase map (brown blocks).

In this map the value 1 (brown color) codes non uniform phase. For the same blocks, in Fig.
3.12 we find blue color, the other blue blocks in Fig. 3.12 are bad fitted. In this data set we
choose to investigate speckle statistics also in blocks with non uniform phase, since the
Kolmogorov-Smirnov test is very selective. Phase can be declared to be non-uniformly
distributed also when only a little deviation from uniformity is present. Thus, it can be
important to further analyze the speckle also in these blocks.

This analysis revealed that block (1,13), containing pixels with range from 1 to 41 and
azimuth from 600 to 700, that was previously dropped because of the non uniform phase
declaration from the Kolmogorov-Smirnov test, exhibits a speckle shape parameter ¢ =1.62.
A visual inspection of the complex data scatterplot shows that distribution appears to be
circular. Other blocks are not interesting, either because they contain deterministic scatterers
or because the estimated shape parameter is almost Gaussian. However, observing the
following figure with the scene after texture depuration, and the original scene in Fig. 3.11, it

is easily seen that the interesting block (1,13) contains a few texture transitions, and also a
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strong scatterer. This can sensibly affect the speckle shape parameter estimate, also
accounting for the reduced dilution effect because of the small block size adopted for this data

set. This has been confirmed by simulations.

100 200 300 400 500 600 700

Figure 3.14 - Scene after texture depuration.

Thus, we can infer that result ¢ =1.62 is not reliable, and the minimum detected speckle
shape parameter remains ¢ =1.78 on block (3,1), i.e. range from 40 to 80, azimuth from 1 to
100. For this block with a non deep deviation from the Gaussian regime, we show the good

fitting in terms of normalized moments:
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Figure 3.15 - Moment fitting for block (3,1).

Results for the other polarizations, VV and HV, are even less interesting in terms of
deviations from the classical speckle regime. The values of ¢ obtained over the natural areas

in the image are closer to 2 than for the VV image.

3.6 Third data set

The data are from an agricultural zone in Recklinghausen, Germany. The data have
been acquired by the AES-1 X-Band SAR from Aerosensing Radarsysteme, 0.38m range
resolution, incidence angle 45°, HH polarization. In the SAR scene it is possible to see many
agricultural fields, small zones with trees, country roads, isolated buildings, and a few strong

point scatterers, probably pylons. Figure 3.16 shows a part of the scene that we examined:
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Figure 3.16 - First SAR scene portion (2000x2048 pixels, rg. x az.).

Analysis of this data set was carried out by texture estimation and compensation with
moving window (patch) size 17x17 and speckle shape parameter estimation on blocks with
size 128x128. Patch size corresponds to that of the first and second data set, reshaped to
square to account for the finer range resolution. We also checked again with a visual
inspection that the typical size of tree canopy is of this order. Block size is intermediate
between those used for the first and the second data sets. The block used is smaller than that
of the first data set to cope with possible large spatial variability of the speckle shape
parameter in the highly visually non stationary natural areas.

However, the results indicate that the SAR speckle in this image is basically Gaussian,

as shown in Fig. 3.17 (as usual, blue codes bad fitting or non uniform phase).
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Figure 3.17 - Shape parameter, patch: 17x17, block: 128x128.

The largest non Gaussian deviation in this portion of the image is given by ¢ =1.9, this
deviation is very light and therefore it is not interesting.
Similar, slightly more interesting, results are got for the second portion of the image,

shown in the next figure.
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Figure 3.18 - Second SAR scene portion (2000x2048 pixels, rg. x az.).

This portion is top adjacent to the previous portion. The corresponding estimated speckle

shape parameter is shown in Fig. 3.19.
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Figure 3.19 - Shape parameter, patch: 17x17, block: 128x128.

Values of ¢=1.7 are found for blocks (21,4) and (20,5), but they are associated to arcas that
include strong artificial scatterers (buildings, pylons), thus the result is not interesting in the
framework of our analysis. The next larger deviation from speckle Gaussianity is in block
(12,19), corresponding to range from 704 to 832, azimuth from 1152 to 1280. Here, ¢=1.8
and the area is natural, seeming to contain trees. Summarizing, in the third data set only a
light deviation from Gaussianity of the speckle regime is detected, in a not sensible

percentage of areas.

3.7 Fourth data set

The data are from a littoral area in Kohala coast, Hawaii. The data have been acquired
by the AIRSAR L-Band SAR from NASA Jet Propulsion Laboratory, 7.5m range resolution,
incidence angle from 70° to 30°, VV polarization. In the SAR scene it is possible to see

natural areas, roads, urbanized zones, an airport infrastructure, and the ocean. Because of its
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large dimension, this data set has been split in various sub-images for easier analysis, but only
those producing the most interesting results will be reported here. In fact, speckle is mainly
Gaussian in the reported and in all the other sub-images, as expected given the coarse SAR
resolution. The total data set is composed of 2079x94000 pixels (rg. x az.), each sub-image is
2709x5000 pixels.

Fig. 3.20 shows the scene portion from azimuth pixel 20001 to 25000:

Figure 3.20 - First SAR scene portion (2709x5000 pixels, rg. x az.).

The black area in far range is ocean, the land zone is natural areas; a road crosses horizontally
the land area in mid range. Speckle analysis has been carried out with moving window patch
size 11x25 and estimation on blocks 160x400, as for the first data set. The estimated speckle
statistics are Gaussian on the ocean and mostly Gaussian on the land, as shown in the next

figure:
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Figure 3.21 - Shape parameter, patch: 11x25, block: 160x400.

In fact, the minimum shape parameter estimate is 1.8. More than 96% of the image exhibits a
shape parameter estimate greater or equal to 1.9.

Next figure shows the scene portion from azimuth pixel 25001 to 30000, i.e. the right
adjacent portion to the previous one. The land area is again natural, apart from the presence of

the littoral road.
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Figure 3.22 - Second SAR scene portion (2709x5000 pixels, rg. x az.).

Figure 3.23 reports the corresponding speckle shape parameter estimates.
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Figure 3.23 - Shape parameter, patch: 11x25, block: 160x400.

Speckle in this image, like in the previous one, is mainly Gaussian. The minimum of ¢ is 1.8.
Again, more than 96% of the image exhibits a shape parameter estimate greater or equal to
1.9.

The last image portion shown of this data set is the sub image from azimuth pixel

10001 to 15000, see Fig. 3.24:
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Figure 3.24 - Third SAR scene portion (2709x5000 pixels, rg. x az.).

Unlike the two previous sub images, this one contains also many areas with artificial
scatterers, like an urban agglomerate along the coastline, see the top image, an airport on the
top center-right and another urbanized zone in correspondence of several roads in the central
left part of the image. Blocks with shape parameter lower than 1.8 are found in
correspondence of the central left urbanized zone, and of the buildings close to the airport
lanes. Bad fitting is also detected for other blocks in the airport area and in the urban

agglomerate along the coastline. The rest of the image exhibits almost Gaussian speckle.

3.8 Conclusions

The speckle analysis carried out on these four different data sets indicates, as
expected, that deviations from the classical speckle regime on natural areas depend both on
SAR system parameters and on the nature of the scattering surface. In particular, non
negligible deviations from the Gaussian regime have been detected in meter resolution X-

Band data at medium grazing angle (first data set) over some forest zones.
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APPENDIX A
A.1 Goodness-of-Fit Test

With the term “goodness-of-fit-test” we generally indicate a procedure to verify (trough
samples) whether a hypothesis regarding a probability distribution function of a variable is
acceptable or not. Goodness-of-fit test is a hypothesis test where the hypothesis Hy and the

alternative hypothesis are respectively:

H,y: the data follow a specified distribution;
Hj: the data do not follow the specified distribution;

Significance level a indicates probability to refuse Ho when it is true (first type error).
The quantity 1-a is the probability that hypothesis Hy is true. With B we indicate second type
error; in other words, the probability to refuse hypothesis H; when it is true. Obviously huge
differences from reality for hypothesis Hy are easy to find, but small differences from reality
are difficult to detect and these determine high values of . It is possible to express 3 by a.

Critical values for a hypothesis test are based on the statistic of test and on significance
level a which determines the sensibility of a test. For a=0.05 Hy hypothesis is rejected with
5% when it is true. Choice of a is arbitrary, common values are 0.1, 0.05 and 0.01. Critical
regions include these values of test’s statistic that cause the reject of hypothesis Hy with
statistic test distribution and significance level a; it is possible to calculate cut-off value for
test’s statistic. Superior and inferior values (or both) of cut-off (in dependence on test
direction) define the critical region.

Let x;,x;......x, be n independent observations of a random variable with distribution

function F(x) which is unknown. Suppose that we wish to test the hypothesis:
Ho: F(x)=Fy(x) (A.1)
where Fy(x) is some particular distribution function, which may be continuous or discrete.

The problem of testing (A.1) is called a goodness-of-fit problem. Any test of (A.1) is called a
test of fit. Hy is a simple hypothesis if Fy(x) is completely specified. As instance, the
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hypothesis that the n observations have come from a normal distribution with specified mean
and variance is a simple hypothesis. On the other hand, we may wish to test whether the
observations have come from a normal distribution whose parameters are unspecified, and
this would be a composite hypothesis. Similarly, if the normal distribution has its mean, but
not its variance, specified, the hypothesis remains composite. In the case of composite
hypothesis parameters are estimated by using the observations. The composite hypotheses are
more common since permit to decide if a sample comes from any distribution of specific type.
Unfortunately, working with composite hypothesis is more difficult since the critical values
are difficult to calculate and often we must resort to simulations methods (e.g. Monte Carlo)
in order to determine the distribution of thetest statistic.
A.1.1 Kolmogorov-Smirnov Test

Kolmogorov-Smirnov (K-S) test is based on the empirical function (ECDF). Given N
ordered data points Y;, Y,, ..., Yy, the ECDF is defined as E, :n(i)/ N where n(i) is the

number of points less than Y; and the Y; are ordered from smallest to largest value. This is a
step function that increases by 1/N at the value of each ordered data point.

Figure A.1 is a plot of the empirical distribution function with a normal cumulative
distribution function for 100 normal random numbers. The K-S test is based on the maximum

distance between these two curves.

100 NORMAL RANDOM NUMBERS
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Figure A.1 - Empirical distribution function (ECDF solid line) and normal distribution (dotted line).
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An attractive feature of this test is that the distribution of the K-S test statistic itself does
not depend on the underlying cumulative distribution function being tested. Another
advantage is that it is an exact test (the chi-square goodness-of-fit test depends on an adequate
sample size for the approximations to be valid) despite these advantages, the K-S test has

several important limitations:

1. It only applies to continuous distributions.

2.1t tends to be more sensitive near the center of the distribution than at the tails.

3. Perhaps the most serious limitation is that the distribution must be fully specified. That
1s, if location, scale, and shape parameters are estimated from the data, the critical
region of the K-S test is no longer valid. It typically must be determined by
simulation.

Due to limitations 2 and 3 above, many analysts prefer to use the Anderson-Darling
goodness-of-fit test. However, the Anderson-Darling test is only available for a few specific
distributions.

In the Table 1.1 we resume the characteristics of K-S test.

Hy The data follow a specified distribution
H, The data do not follow a specified distribution
Test The Kolmorogov-Smirnov test statistic is defined as:
statistic i ) ] )
D= max F(Y,)- N where F 1s the theoretical cumulative

distribution of the distribution being tested, which must be a
continuous distribution (i.e. no discrete distributions such as the
binomial or Poisson), and it must be fully specified (i.e, the location,
scale, and shape parameters cannot be estimated from the data).
Confidence | o

level
Critical | The hypothesis regarding the distributional form is rejected if the
region test statistic, D, is greater than the critical value obtained from a

table. There are several variations of these tables in the literature that
use somewhat different scaling for the K-S test statistic and critical
regions. These alternative formulations should be equivalent, but it
1s necessary to ensure that the test statistic is calculated in a way that
is consistent with how the critical values were tabulated.

Table A.1 - Characteristics of K-S test.
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The K-S test is applicable to unbinned distributions that are functions of a single
independent variable, that is, to data sets where each data point can be associated with a single

number. In such cases, the list of data points can be easily converted to an unbiased estimator

Sy (x) of the cumulative distribution function of the probability distribution from which it

was drawn. If the N events are located at values x;, i=1,...,N, then S, (x) is the function

giving the fraction of data points to the left of a given value x. This function is obviously
constant between consecutive (i.e., sorted into ascending order) x;’s, and jumps by the same
constant 1/N at each x;.

Different distribution functions, or sets of data, give different cumulative distribution
function estimates by the above procedure. However, all cumulative distribution function
agree at the smallest allowable value of x (where they are zero), and at the largest allowable
value of x (where they are unity).The smallest and largest values might of course be +oo. So it
is the behavior between the largest and smallest values that distinguishes distributions.

One can think of any number of statistics to measure the overall difference between two
cumulative distribution functions: the absolute value of the area between them, for example,
or their integrated mean square difference. The Kolmogorov-Smirnov D is a particularly

simple measure: it is defined as the maximum value of the absolute difference between two

cumulative distribution function. Thus for comparing one data set’s S, (x) to a known

cumulative distribution function P(x), the K-S statistic is:

D = max

—00<Xx<0

Sy (x)-P(x)| (A2)

while for comparing two different cumulative distribution functions S, (x) and S, (x), the

K-S statistic is:

D = max

—00<x<0

Sy, (x) =Sy, (x) (A3)
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cumulative probability distribution

Figure A.2 - Statistic D of K-S test. P(x) theoretical distribution, Sy(x) empirical distribution.

What makes the K-S statistic useful is that its distribution in the case of the null
hypothesis (data sets drawn from the same distribution) can be calculated, at least to useful
approximation, thus giving the significance of any observed nonzero value of D. A central
feature of the K-S test is that invariant under reparametrization of x; in other words, you can
locally slide or stretch the x axis in figure 1.4, and the maximum distance D remains
unchanged. For example, you will get the same significance using x as using /og x.

The function that enters into the calculation of the significance can be written as the

following sum:

0

O (1)=2 > (-1 e (A.4)

J

which is a monotonic function with the limiting values O, (0)=1 and QO () =0.
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In terms of this function the significance level of an observed value of D (as a disproof

of the null hypothesis that the distributions are the same) is given approximately by the

formula
Prob (D > observed ) = Oy ([N, +0.12+0.11/{/N, | D) (A.5)
NN, e
where N, = N for the case (A.2) and N, :N—N for the case (A.3) of two distributions,
1 + 2

where N; is the number of data points in the first distribution, N, the number in the second.
The nature of the approximation involved in (A.5) is that it becomes asymptotically accurate
as the N, becomes large, but is already quite good for N, > 4, as small a number as one might
ever actually use.

So, we have the following routines for the cases of one and two distributions (C language):

#include <math.h>
#include "nrutil.h"

void ksone (float datal], unsigned long n, float (*func) (float), float *d,
float *prob)

Given an array datall..n], and given a user-supplied function of a single variable
func which 1is a cumulative distribution function ranging from 0 (for smallest
values of its argument) to 1 (for largest values of its argument), this routine

returns the K-S statistic d, and the significance level prob. Small values of prob
show that the cumulative distribution function of data is significantly different
from func. The array data is modified by being sorted into ascending order.

float probks(float alam);

void sort (unsigned long n, float arrl]);
unsigned long J;

float dt,en,ff, fn,fo=0.0;

sort (n,data); If the data are already sorted into
ascending order, then this call can be omitted.
en=n;
*d=0.0;
for (j=1;j<=n;Jj++) { Loop over the sorted data points.
fn=7j/en; Data’s c.d.f. after this step.
ff=(*func) (dataljl); Compare to the user-supplied
function.
dt=FMAX (fabs (fo-ff), fabs (fn-ff)); Maximum distance.
if (dt > *d) *d=dt;
fo=fn;
}
en=sqrt (en);
*prob=probks ((en+0.12+0.11/en) * (*d)) ; Compute significance.
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#include <math.h>

void kstwo (float datall], unsigned long nl, float data2[], unsigned long n2,
float *d, float *prob)

Given an array datal[l..nl], and an array data2[l..n2], this routine returns the K-
S statistic d, and the significance level prob for the null hypothesis that the
data sets are drawn from the same distribution. Small values of prob show that the
cumulative distribution function of datal is significantly different from that of
data2. The arrays datal and data2 are modified by being sorted into ascending
order.

float probks(float alam);

void sort (unsigned long n, float arrl]);
unsigned long jl=1,]j2=1;

float d1,d2,dt,enl,en2,en, fnl1=0.0,£fn2=0.0;

sort (nl,datal);
sort (n2,data?);

enl=nl;

en2=n2;

*d=0.0;

while (j1 <= nl && j2 <= n2) { If we are not done...
if ((dl=datal[jl]) <= (d2=data2[j2])) fnl=jl++/enl; Next step is in

datal.

if (d2 <= dl) fn2=j2++/en2; Next step is in dataZ2.
if ((dt=fabs(fn2-fnl)) > *d) *d=dt;

}

en=sqgrt (enl*en2/ (enl+en2)) ;

*prob=probks ((en+0.12+0.11/en) * (*d) ) ; Compute significance.

Both of the above routines use the following routine for calculating the function Qgg [Pre02]:

#include <math.h>
#define EPS1 0.001
#define EPS2 1.0e-8

float probks(float alam)
Kolmogorov-Smirnov probability function.
{
int j;
float a2, fac=2.0,sum=0.0, term, termbf=0.0;

a2 = -2.0*alam*alam;

for (§=1;3<=100;73++) {
term=fac*exp (a2*j*j);
sum += term;
if (fabs(term) <= EPSl*termbf || fabs(term) <= EPS2*sum) return sum;
fac = -fac; Alternating signs in sum.
termbf=fabs (term) ;

}

return 1.0; Get here only by failing to converge.

A.1.2 Variants of Kolmogorov-Smirnov test
The sensitivity of the K-S test to deviations from a cumulative distributions function

P(x) is not independent of x. In fact, the K-S test tends to be most sensitive around the median

174




value, where P(x) =0.5, and less sensitive at the extreme ends of the distribution, where P(x)

is near 0 or 1. The reason is that the difference |S (x)— P(x) does not, in the null hypothesis,

have a probability distribution that is independent of x. Rather, its variance is proportional to
P(x)[l—P(x)], which is largest at P=0.5. Since the K-S statistic (A.2) is the maximum

difference over all x of two cumulative distribution functions, a deviation that might be
statistically significant at its own value of x gets compared to the expected chance deviation at
P=0.5. and is thus discounted. A result is that, while the K-S test is good at finding shifts in a
probability distribution especially changes in the median value, it is not always so good at
finding spreads, which more affect the tails of the probability distribution, and which may
leave the median unchanged.

One way of increasing the power of the K-S statistic out on the tails is to replace D by a

so-called stabilized or weighted statistic, for example the Anderson-Darling statistic,

Sy (x)=P(x)
’°°<"<°"\/P [1 P(x)]

D*=m

(A.6)

Unfortunately, there is no simple formula analogous to equations (A.4) and (A.5) for

this statistic. There are many other possible similar statistics, for example

IS () -P)]
PO\/P [1 2 ):IdP(x) (A7)

which is also discussed by Anderson and Darling.

Another approach is due to Kuiper. We already mentioned that the standard K-S test is
invariant under reparametrization of the variable x. An even more general symmetry, which
guarantees equal sensitive at all values of x, is to wrap the x axis around into a circle
(identifying the points at +o0), and to look for a statistic that is now invariants under all shifts
and parametrizations on the circle. This allows, for example, a probability distribution to be
“cut” at some central value of x, and the left and right halves to be interchanged, without
altering the statistic or its significance.

Kuiper’s statistic, defined as
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V=D, +D = max [S,(x)=P(x) ]|+ max [ P(x)-S, ()] (A.8)
is the sum of the maximum distance of S, (x) above and below P(x). You should be able to

convince yourself that this statistic has the desired invariance on the circle (D: and D. change
individually but their sum is constant).
Furthermore, there is a simple formula for the asymptotic distribution of the statistic V,

directly analogous to equations (A.4)-(A.5). The function Q is given by the follow formula:

O (1) = 2&(4 JA2=1)e (A.9)

which is monotonic and satisfies O, (0)=1 Oy, ()=0.

In term of this function the significance level (1-a) is given by

Prob (¥ > observed) = Oy, ([\/ﬁ +0.155+0.24/ [N, | V) (A.10)

N1N2

+N,

here N, = N in the one-sample case, or is given by equation N, = in the case of the

1

two samples.

We report the matlab script of function for to calculate K-S probability:

function [D,n] = probks(Q)

o

function D = PROBKS (Q) calculates for the Kolmogorov =-Smirnov statistic d the
$significance level prob.

See KSTWO. Adapted from Press, Teukolsky, Vetterling

and Flannery, Numerical Recipes in Fortran p620.

Checked using in XPROBKS in Numerical Recipes Example, Book pl85

o

oe oe

o

o

Version 1.0 RHS 8/11/93

a2=-2.0*Q."2;
factor=2;
D=0;
termbf=0;
term=1;
for n=1:100
term=factor*exp (a2*n”"2);

D=D+term;
if abs(term)<=0.001*termbf | abs(term)<=1le-8*D
break
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end
factor=-factor;
termbf=abs (term) ;
end
probks=2; % get here by failing to converge

We report the matlab script of function for to calculate Kuiper probability

function [D,n] = probkp (Q)

a2=2.0*Q."2;
factor=2;
D=0;
termbf=0;
term=1;
for n=1:100
term=factor* (2*a2*n"2-1) *exp (-a2*n"2);

D=D+term;
if abs(term)<=0.001*termbf | abs(term)<=1e-8*D
break
end
termbf=abs (term) ;
end
probkp=2; % get here by failing to converge

A.1.3 Remarks

By observing the matlab scripts, we note that the probks function needs as input the
test statistics. By using different test, test statistic changes. In the K-S test, the statistic is
given by (A.2) (or by (A.3) if we are in the case of two distribution) while for the Kuiper test
the statistic is given by (A.8). Expressions (A.5) and (A.10) show that the O functions have
similar statistics multiplied by two different factors for the case of K-S or Kuiper tests. In
(A.5)-(A.10), the N, term appears with different coefficients. Actually we used in our

simulation the following expressions, defined as “modified statistic™ of test

(VM. +0.12+0.11/(N,) D and ([N, +0.155+024/[N, )V (A1)

We introduced this modified statistics because of the use of finite data points, as done in

[Ste70].
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